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Abstract

Mobile Ad Hoc Networks (MANETSs) are decentralized, infrastructure-less wireless networks in which nodes function simultaneously
as end devices and routers, enabling the dynamic establishment and maintenance of communication paths as required. One of the
fundamental problems in MANETs is that links are prone to failure owing to, link breakage due to energy drain, node mobility, and
changing environmental conditions. While the Ad hoc On-demand Multipath Distance Vector, AOMDV protocol, offers multipath fault
tolerance, it is dependent upon hop count and is therefore also subject to link failures. In order to overcome this, link quality metrics,
such as Expected Transmission Count, ETX, and bio-inspired optimization algorithms, such as Ant Colony Optimization, ACO have been
investigated. Recent advancements in machine learning, particularly in the realm of predictive models such as Long Short-Term Memory
networks and methods of ensemble learning like Random Forests, present promising options for link quality prediction that considers
historical and real-time data in a more dynamic fashion. The goal of this proposal is to combine AOMDV, ACO, ETX, LSTM, Random
Forests, and Predictive Analytics into one intelligent multipath routing protocols for MANETs.
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Introduction

MANETs are decentralized wireless network system that
operate without fixed infrastructure, enabling wireless
communication among the mobile nodes. Routing protocols
for these types of networks are challenging to design due

to the dynamism of their topology, resource constraints,
and non- deterministic wireless links. This high dynamism
is usually not handled adequately by predictable routing
protocols, which can produce higher packet loss, higher
latency and reduced overall network reliability (Alattas,
2021).

The Ad Hoc On-Demand Multipath Distance Vector
(AOMDV) routing protocol is commonly employed to
address these challenges. The purpose of AOMDYV, an
extension of the AODV protocol, is to reduce the impact of
route failures by finding several loop-free and discontinuous
pathways between the source and destination. In highly
dynamic network environments, this multipath competency
improves the communication efficiency and reliability
overall, supports load balancing, and strengthens fault
tolerance. The main disadvantage is that, even when AOMDV
implements multiple routes, the metrics used for route
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selection remain the same: the simple hop count, which
ignores more complex link parameters like node mobility,
energy status, link signal strength/stability, etc.

In this manner, the selected routes in AOMDV are still
prone to frequent breaks, especially in highly dynamic
MANET scenarios, resulting in packet loss, higher latency
and increased signalling overhead

(Marina & Das, 2001) and (Marina & Das, 2006). Machine
learning has also been proposed as an important technique
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for MANET routing, particularly when combined with these
methods. Predicting link quality and lifetime using network
metrics and historical information can assist in making
proactive routing decisions. The choice of neural networks
and other forms of complex regression allows for prediction
of link failures, determining the best paths to be taken, and
overcoming resource bottlenecks (Shao, Wang, Liu, & Zhu,
2022).

By constructing multiple routes from source to
destination, multipath routing protocols provide an effective
means of ensuring reliability and fault tolerance. The idea of
combining bio-inspired approaches with machine learning
based predictive link analytics is to choose and preserve
the optimal routes, cope with unknown contingencies, and
eventually enhance the security, reliable connectivity, and
energy efficiency in MANETSs.

To overcome these challenges, biologically inspired
algorithms that emulate natural processes, such as ant
colony optimization and swarm intelligence, are increasingly
being used to design adaptive and robust routing
protocols for MANETs. These bio-inspired protocols take
inspiration from features like distributed decision-making
or adaptability found in nature, to survive with the dynamic
network topology and improve routing performance (Da
Costa Bento & Wille, 2020).

This research work proposed an enhanced AOMDV
protocol that is integrated with ML- based link prediction.
A ML model is trained on these to predict the probability
of a link to break given some mobility, signal and traffic
features. During route discovery AOMDV combines these
predictions to give preference to stable links, while keeping
multipath routes diversity. This technique is expected to
achieve better packet delivery ratio, route discovery time,
and routing overhead than AOMDV.

Related Works

AOMDV (Marina & Das, 2001) provides multipath fault
tolerance, its reliance on hop count as the primary routing
metric limits its flexibility. ETX (De Couto, Aguayo, Bicket, &
Morris, 2003) is a widely used metric for link delivery success
measurement and quality of links in wireless networks.
Ant Colony Optimization techniques (Rajesh et al., 2015)
have used ACO in the context of multipath routing, where
different paths are found with some probability. There are
some recent works that apply machine learning techniques
to improve the routing in MANETSs.

(Jiang, Wu, & Yin, 2020) investigates energy-efficient
transmission scheduling in multi-hop real-time WSNs
using Dynamic Modulation Scaling (DMS). Unlike previous
theoretical studies, it presents the primary empirical
evaluation of DMS-enabled topology control using SDR
hardware, verbalizes the problem as an optimization
model, and suggests two heuristics to minimize energy
consumption while conserving performance. (Qiu et al.,

2019) introduced a learning-based opportunistic routing
scheme that adapts to dynamic links, improving delivery,
delay, and energy efficiency in wireless networks.

(Zhang et al., 2022) proposed to explore hybridization
between ML models and on demand routing and they
emphasize the advantages of hybridization between ML and
traditional protocols. Yet, AOMDV has neverbeenintegrated
with a combined stack of ACO, ETX and advanced machine
learning methods such as LSTM and Random Forests to
develop a single predictive multipath routing framework.

Dhinakaran et al. introduced Bat-Optimized Link State
Routing (BOLSR), a combination of the proactive OLSR
routing protocol and Bat Algorithm to discover routes
that consumes lesser energy. Selection criteria are based
on the energy consumption and the path length, which
improves the routing performance in highly dynamic MANET
(Dhinakaran, Sankar, Raja, & Jasmine, 2023). In the work of
Banerjee et al, a Swarm Intelligence Enhanced AOMDYV, an
improved multipath routing protocol based on the extension
of AOMDV with ACO and Bat Algorithm metaheuristics,
was presented. The protocol considers factors such as link
availability, node mobility, queue delay and bit error rate
(BER) to determine stable and reliable of routes (Banerjee,
2019). Varun Kumar et al. presented PSO-BLAP, which uses
Particle Swarm Optimization and fuzzy logic to predict link
quality and bandwidth availability. It supports dynamic
rerouting in case of link failures and therefore it allows a
good multipath communication

(Sheikhan & Hemmati, 2012) proposed a PSO-optimized
Hopfield Neural Network multipath routing scheme that
uses Link Expiration Time (LET) estimation to build node-
and link-disjoint paths for improved reliability in highly
mobile networks. PARRoT (Predictive Ad-hoc Routing
with Reinforcement Learning and Trajectory Knowledge),
proposed by Benjamin Sliwa et al., consists of acombination
of reinforcement learning agents and mobility trajectory
prediction. This method is to predict, in advance, future
connectivity patterns, which greatly increase the robustness
of the routes and reduces the latency (Sliwa, Schiiler,
Patchou, & Wietfeld, 2020).

DeepCQ+, a routing protocol that utilizes multi-agent
deep reinforcement learning (MADRL), was proposed by
Saeed Kaviani et al. DeepCQ+ makes no use of thresholds
as required in classic Q-learning techniques, thus improving
adaptability, lowering overhead, and achieving higher
throughput in different mobility and traffic patterns
situations (Kaviani et al., 2021).

PEAR (Predictive Energy-Efficient Adaptive Routing),
a predictive analytics protocol from Neelam et al. can
dynamically adapt in real-time to topological changes
within the network optimizing the energy consumption
and improving routing stability. (Banu, Surputheen, and
Rajakumar, 2025) proposes AOMDV-ETXACO, an enhanced
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MANET routing protocol that makes use of Expected
Transmission Count (ETX) in order to provide an estimation
of the reliability of links, and Ant Colony Optimization (ACO)
to select multipath. When tested using a node density of
between 20 to 100 in NS-3, it outperforms existing AOMDV
variants with respect to energy efficiency, throughput, end-
to-end delay and packet delivery ratio.

Proposed Methodology

This section proposes a novel multipath routing framework
for Mobile Ad-hoc Networks (MANETs), which integrates Ant
Colony Optimization with the Expected Transmission Count
(ETX) metric, supported by predictive analytics. The primary
objective of the framework is to enhance network reliability
and efficiency by improving route stability, optimizing
route discovery, increasing throughput and packet delivery
ratio, minimizing end-to-end delay, and reducing energy
consumption. Collectively, these improvements contribute
to superior overall network performance in highly dynamic
and resource-constrained MANET environments.

Conventional MANET routing protocols often struggle to
maintain reliable communication due to inherent challenges
such as limited energy resources, fluctuating link quality,
and rapidly changing network topologies. To address
these limitations, the proposed approach employs Ant
Colony Optimization (ACO), a nature-inspired optimization
technique that simulates the foraging behavior of ants. By
leveraging pheromone trails and local heuristic information,
ACO is capable of efficiently identifying multiple optimal
paths, thereby providing a distributed and adaptive solution
for route discovery in mobile networks

To ensure that the selected routes are not only shortest
but also reliable, the ETX metric is incorporated into
the protocol. ETX represents the estimated number of
transmissions, including retransmissions, required for a
packet to be successfully delivered over a link. By integrating
ETXinto the ACO-based path selection process, the protocol
favors routes with higher link quality and lower transmission
costs, thereby enhancing reliability and minimizing end-to-
end delay.

In this method, there is a predictive link analytics step,
where the prediction of a link’s stability is made from
historical data on mobility, signal strength and previously
observed ETX values. This is a predictive approach that
allows the proactive maintenance of the route, and it is
because of this that the protocol can dynamically adjust to
link degradation and prevent frequent route failures.

The combination of bio-inspired optimization (ACO),
quality-aware metrics (ETX) and machine learning- based
prediction offers a routing protocol able to perform
efficiently multipath, have reduced control overhead and
increased PDR . Subsequent sections describe the various
parts of the system, such astheassumptions onthe network,
the route discovery process, ETX calculation, the ACO

process for path evaluation, and the model for link stability
predictions. The flowchart of Intelligent AOMDV (IAOMDV)
Framework is as shown in Figure 1.

Objectives

« Design an intelligent multipath routing protocol that
combines AOMDV with bio-inspired optimization (ACO),
link quality assessment (ETX), and ML-based predictive
analytics

« Develop a ML model - a hybrid of LSTM and Random
Forest - that predicts link stability and route lifetime by
analyzing both real-time signals and past node and link
data, like the last hour’s connection drops.

« Integrate ACO to improve route selection by steering
traffic toward the high-quality paths based by
pheromone trails and predictive link scores.

- Evaluate the performance of the proposed protocol
through NS3 simulation in various MANET scenarios.

Algorithm: Intelligent AOMDV (IAOMDV) Framework
Input:

Source S, Destination D

Network topology N

ML models (Random Forest, LSTM) ACO parameters: a, B, p
ETX measurement parameters Min_Lifetime_Threshold

Output:
Selected route from S to D with robust performance

Route Discovery using AOMDV

Initiate AOMDV to find multiple disjoint paths between S
andD

For each discovered link li:

Measure ETX(li) using probe packets

Store ETX(li) in neighbor table

end for

ML-Based Link Quality Filtering
For each li in neighbor table:
Extract feature vector Xi(t)

{ Machine Learning ’

Models
Random LSTM
Forest

Link Link Lifetime
Classification Prediction

! |

[ETX, ACO, AOMDV]

IAOMDV

Figure 1. Flowchart of IAOMDV
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Class « RandomForest_Classify(Xi(t))
if Class == “Unstable” then

Mark li as BLOCKED

continue

end if

Historical sequence Hi « [Xi(t-k)...Xi(t)]
Predicted_Lifetime « LSTM_Predict(Hi)
if Predicted_Lifetime < Min_Lifetime_Threshold
then

Mark li as BLOCKED

end if

end for

Filter links
Validated link set V « neighbors not BLOCKED

ACO-Based Path Selection

For each li € V:

Initialize pheromone T(li) « 10
end for

while data packets to forward do

For each li € V:

Compute:

P(li) = [t(li)yra * n(I)AB 1/ sum_over_V (t(lj)Aa* n(jAB)
Select next hop li with probability P(li)
Forward data packet on li

end while

Pheromone Update
Periodically:

Foreachlie V:

T(li) — (1 - p) * (li)

end for

Upon successful packet delivery:
For used path I_success:
T(I_success) « T(l_success) + At
end periodically

Route Maintenance
Monitor ETX changes in real-time
if ETX(li) exceeds threshold:
Trigger local repair or path switch
end if

The Intelligent AOMDV (IAOMDV) is a version of the
AOMDYV routing protocol specifically for MANETs. This work
combines estimation of link qualities (ETX), machine learning
(Random Forest, LSTM) to predict links, and ACO for the
intelligent selection of a path. Let’s analyze and explain how
the route discovery phase is and how nodes take part in.

Route Discovery using AOMDV

Line 1-2
The process begins by invoking the AOMDV routing protocol
to discover multiple node- disjoint or link-disjoint paths

between the source node S and the destination node D.

Line 3-6

For each link lifound in the discovered paths:

« ETXis measured using probe packets.

« These ETX values, which reflect link reliability,
are stored in the node’s neighbour table for later
evaluation.

ML-Based Link Quality Filtering

Line 8- 10

Each link’s real-time feature vector Xi(t)—which may include
parameters like ETX, signal strength, delay, and mobility—is
extracted. The Random Forest classifier is applied to classify
the link as either “Stable” or “Unstable”.

Line 11-14
Ifalinkis classified as “Unstable”, it isimmediately marked as
BLOCKED and removed from further consideration.

Line 15-19

For remaining links:

- Atime-series sequence of features, Hi = [Xi(t—k)...Xi(t)],
is created.

« The expected lifetime of the link is predicted by LSTM
(Long Short-Term Memory) model.

- If the estimated link lifetime falls below the Min_
Lifetime_Threshold, the link is classified as BLOCKED
owing to its potential unreliability.

Line 20-22

After filtering, the remaining validated links (not blocked
by ML filtering) form the set V, which will be used for route
selection.

Machine Learning Model Implementation

The proposed IAOMDV framework integrates two machine
learning models - Random Forest (RF) and Long Short-
Term Memory (LSTM) - to improve link quality evaluation
and routing decisions in MANETs. The RF model classifies
network links either Stable or Unstable categories, while the
LSTM model predicts the expected lifetime of each link
based on historical performance data. By combining these
models, the framework enables proactive link selection
and route optimization effectively mitigating performance
degradation before it occurs.

Dataset Preparation

A dataset of approximately 50,000 link samples was
collected from multiple NS-3 simulation runs under
varying node densities ranging from 20 to 100 nodes. Each
sample represents 10 seconds of link activity and includes
performance measurements recorded during simulation.

Feature Selection and Pre-processing
The models were trained using key network performance
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features:
« ETX (Expected Transmission Count) — measures link
reliability.
+ Signal-to-Noise Ratio (SNR) - indicates link signal quality.
« Link Delay - measures average transmission delay.
«  Node Mobility Speed - captures relative movement
patterns.
Hop Count — number of hops in the route.
Residual Energy — remaining battery power of the nodes.
Before training, all features were normalized to a [0, 1]
range, and short-term fluctuations in measurements were
smoothed using a moving average filter to reduce noise.

Model Architecture and Hyper Parameters

Random forest

Configured with 100 decision trees, a maximum depth of
15, and a minimum of 5 samples per leaf node to balance
classification accuracy and computation time.

LSTM

Configured with two layers, 64 hidden units, a sequence
length of 5timesteps, and trained using the Adam optimizer
with a learning rate of 0.001.

Training and Validation Process

The dataset was split into 70% training, 15% validation,
and 15% testing sets. For the RF model, evaluation metrics
included accuracy, precision, recall, and F1-score. For the
LSTM model, performance was assessed using Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE).

Integration with NS-3

Both models were trained offline using Python-based
frameworks — Scikit-learn for RF and TensorFlow/Keras for
LSTM. The trained model weights were then integrated into
NS-3 via Python bindings to enable real-time predictions
during simulation. The models perform link evaluations
every 5 seconds for all active links.

Computation Overhead

The RF model achieves an average prediction time of 0.3
milliseconds per link, while the LSTM model requires 1.2
milliseconds per link, based on testing with an Intel i5 CPU.
This low computational cost makes the approach feasible
for real-time MANET operations.

Adaptation Mechanism
In its current form, the system does not perform online
learning during simulation. Instead, models are retrained
offline after significant scenario changes (e.g., mobility
pattern variations or network density changes) and then
redeployed in the simulation environment.

This integration of RF and LSTM ensures that only reliable
and long-lasting links are included in the routing process,
significantly reducing route breakages, lowering control

overhead, and improving packet delivery performance.
ACO-Based Probabilistic Path Selection

Line 24-26

Foreach linkin the validated set V, the pheromone value t(li)
is initialized to a constant t0. This value indicates the initial
attractiveness of each link.

Line 28-33

During data transmission:

« Foreachlinkli, the selection probability P(li)is computed
using the ACO probabilistic formula:

[(1)°] - [n(1)F]
Eq. (1)

PU= S et - ()9

« 1(li) is the pheromone value (learned path preference),

« n(li) is the heuristic desirability, often the inverse of ETX
(1/ETX),

« aand B are ACO parameters controlling the importance
of pheromone vs. heuristic.

The next hop is selected probabilistically based on P(li),

ensuring load balancing and adaptability and data packets

are forwarded through the selected link.

Pheromone Update Mechanism

Line 36-39

At periodic intervals, pheromone evaporation is applied to
prevent stale paths from dominating:

(i) « (1 — p) - z(li) Eq.(2)
where pis the evaporation rate, controlling how quickly
outdated paths lose priority.

Line 40-42

Upon successful packet delivery, the pheromone level for

the utilized path is reinforced:

T(l_success) «— t(l_success) + At Eq.(3)
where At represents a positive reward for a reliable

delivery path, promoting its future selection.

Route Maintenance

The protocol continuously monitors real-time ETX of active

links:

« Ifany link’s ETX exceeds a certain threshold, indicating
degradation, the protocol triggers local route repair
or switches to an alternate path from the available
multipath set.

«  This proactive maintenance minimizes packet drops and
ensures consistent quality of service.

Experimental Setup
To evaluate the performance of the proposed IAOMDYV, the
following experimental setup was designed, specifying
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the simulation parameters, network conditions, and
performance metrics considered.

Implementation of Route Discovery Phase:

Initial Network Graph

A simulated Mobile Ad-hoc Network (MANET) is initialized
with 9 nodes, representing mobile devices capable
of wireless communication without relying on fixed
infrastructure. The graph shows the initial MANET topology
with three completely disjoint paths between the source

node (1) and destination node (7).
Path 1 (green):1—»2—>4—7

Path 2 (orange) : 1 >3 —>5—>7
Path 3 (blue):1 -6 —>8—>9—7
Table 1: Missing Caption
Parameter Value
Simulator NS-3.38
Simulation Time 500 seconds

Number of Nodes
Simulation Area
Mobility Model
Node Speed

Pause Time
Transmission Range
Channel Bandwidth

Operating
Frequency

Propagation Model
Traffic Type

Packet Size

Data Rate

MAC Protocol

Simulation Runs

20, 40, 60, 80, 100
1000 m x 1000 m
Random Waypoint
Uniform [1, 201 m/s
0 seconds

250 meters

2 Mbps

2.4 GHz

Two-Ray Ground

UDP - Constant Bit Rate (CBR)
512 bytes

4 packets/sec

IEEE 802.11 DCF

10 runs with different random
seeds

Initial Network Graph with Three Disjoint Paths

a
/ Path 2
\_ path 3
7

e

—— Path 1

el

Figure 2:. Initial network graph with three disjoint paths

This is the AOMDV route discovery phase output, where
multiple parallel routes are identified for redundancy and
reliability.

From the Source (Node 1) to the Destination (Node 7),
the AOMDV (Ad hoc On-demand Multipath Distance Vector)
routing protocol discovers three completely disjoint paths:
Path 1:1— 2 —4—7 — Thisisarelatively short and direct
path, involving only 3 hops.

Path2:1 —3—5—7— Anothershortroute,alsowith 3 hops,
but using entirely different intermediate nodes compared
to Path 1.

Path3:1—6—8—9— 7 — Alongerroute with 4 hops,
which may offer redundancy if the other two paths fail.
The existence of multiple disjoint paths ensures fault
tolerance, meaning that if one path fails due to link
breakage or node movement, others can take over without
rediscovering routes.

Route Discovery Table (AOMDV Phase)

The table 1 shows the multiple disjoint routes discovered
between the Source Node (1) and the Destination Node (7)
during the AOMDV (Ad hoc On-demand Multipath Distance
Vector) routing protocol phase.

ETX Table and Formula

ETX Formula:
1

df x dr

Where:

- df = Forward delivery ratio — the probability that a
packet sent from A to B is successfully received.

« dr = Reverse delivery ratio - the probability that the
acknowledgment (ACK) sent from B to A is successfully
received. The ETX values are calculated using equation
4 (Table 4).

ET = (Eq. 4)

ML-Based Link Filtering (Simulated with Threshold:
ETX > 2.5)
The table 5 and Figure 4 illustrate a filtered MANET topology
where each node represents a mobile device, and links are
evaluated for routing suitability.
Two main criteria are used for filtering:
«  ETX (Expected Transmission Count) — measures link
reliability.
« Machine Learning (Random Forest & LSTM) — predicts
link stability and lifetime.
Valid links (green solid lines) have low ETX and are
ML-classified as stable, making them suitable for routing

Table 2: Route Discovery

Hop' 1 Hop 2 Hop 3 Hop 4 Hop 5
1 2 4 7 -
1 3 5 7 -
1 6 8 9 7
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Table 3: Link Quality Table

ML-Based Link Filtering Visualization
Green = VALID, Red Dashed = BLOCKED

Link ETX Value 5 ETX=1.1 3
1-2 1.5 ;/ \a\
& b
2-4 1.2 7 X
7 erx=1s—— L
a =Fi’~‘1 A=l — & ‘\‘
4-7 1.3 \% %‘b
1-3 17 % &
L 6
3-5 1.1 S o
oy -
5-7 1.8 &
L 2.7 Figure 4: ML Based Link Filtering Visualization
6-8 1.6
8-9 1.4 Table 5: ML-Filtered Path ETX Table
9-7 25 Path Sum of ETX
1-2-4-7 4.0
Table 4: ML-Filtered Link ETX Table
1-3-5-7 4.6
Link ETX ML filter result
1-6-8-9-7 BLOCKED (due to 1-6)
1-2 15 VALID
24 12 VALID Sum), the routing algorithm determines the most reliable
4-7 13 VALID and efficient path from the source to the destination after
1-3 17 VALID the ML-based filtering stage. For Path 1-2-4-7, the ETX
3s » VALID values of each link are summed: (1-2 = 1.5) + (2-4=1.2) +
' (4-7 = 1.3), giving a total of 4.0. Since all links are valid, this
57 18 VALID path is considered. For Path 1-3-5-7, the ETX sum is (1-3 =
1-6 27 BLOCKED 1.7) + 3-5=1.1) + (5-7 = 1.8) = 4.6, with all links valid, so
6-8 16 VALID it is also considered. However, Path 1-6-8-9-7 is blocked
because link 1-6 was marked invalid during ML filtering due
89 14 VALID to a high ETX of 2.7 and low predicted stability, so the ACO
9-7 25 VALID

Network Graph with ETX Paths

Figure 3: Network Graph with ETX Paths

(e.g.,1-2,2-4,4-7,1-3-5-7). The blocked link (1-6) is shown
as a red dashed line due to high ETX and poor predicted
stability. This filtering ensures only reliable paths are
considered in the routing phase, improving overall network
performance.

ACO-Based Path Selection (ETX Sum)
Selected Path: 1 — 2 — 4 — 7 (lowest ETX, all links valid)
From table 6, the ACO-based path selection process (ETX

skips it entirely. After comparing the total ETX values of the
valid paths, the algorithm selects Path 1-2-4-7, as its ETX
of 4.0 is the lowest, indicating it likely requires the fewest
transmissions. This ensures the route balances minimal
transmission effort with link reliability, aligning with ACO’s
optimization goal.

Table 6: Link Maintenance Table

Link ETX Maintenance action
1-2 15 Stable

2-4 1.2 Stable

4-7 13 Stable

1-3 1.7 Stable

3-5 1.1 Stable

5-7 1.8 Stable

1-6 27 Trigger Repair
6-8 1.6 Stable

8-9 14 Stable

9-7 25 Stable
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Table 7: Route Discovery Time (in Seconds)

No. of Nodes AOMDV GA AMPOA OMDV AOMDVA COPSO MOAOMDV AOMDVET XACO IAOMDV
20 1.5 1.2 1.2 1.3 1.2 1.1
40 3.2 29 2.7 3.0 2.1 1.9
60 4.5 4.0 3.8 4.2 2.8 25
80 6.0 53 5.1 55 3.4 3.0
100 7.5 6.8 6.5 7.0 4.0 35

Route Discovery Time = Time (RREP received) - Time (RREQ sent)

Route Discovery Time ws Number of Nodes (Proposed IAOMDV vs Other Protocols)

—8— AMOMDVGA

o AMPOAOMDV
—&— ADMDVACOPSO
—e— MOAOMDV

== ADMDVETXACO
=8= Proposed IAOMDV

IS n @ -

w

Route Discovery Time (seconds)

P 0 a0 50 0 1b w0 %0 100
Number of Nodes

Figure 5: Route Discovery Time vs Number of Nodes

Route Maintenance Table

In Table 7, the majority of network links—specifically, 1-2,
2-4,4-7,1-3,3-5,5-7,6-8,8-9,and 9- 7—display moderate
ETX values within the range of 1.1 to 2.5. These links are
classified as stable, do not necessitate intervention, and
remain suitable for routing purposes. However, the link 1-6
has a relatively high ETX of 2.7, indicating poor reliability,
and is flagged with a “Trigger Repair” status, prompting the
system'’s route maintenance mechanism to either attempt
a local repair by finding an alternative nearby route or to
avoid this unstable link altogether in future path selections.

Final Selected Path Graph

Thefinal chosen path for packet forwardingis: 1 —2—4—7
The final selected path graph represents the outcome

of the IAOMDV routing process after all filtering and

optimization stages, resulting in the choice of route 1 —

2 — 4 — 7. This path was selected because all its links

Throughput vs Number of Nodes (Proposed IAOMDV vs Other Protocols)

—o— AOMOVGA

#— AMPOACMDY
—&— AOMOVACOPSO
—&— MOAOMDYV

—&— AOMOVETXACO
=#= Proposed IA0MDY

Throughput (kbps)

20 0 0 50 &0 0 80 %0 100
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Figure 6: Throughput vs Number of Nodes

have low ETX values (1-2: 1.5, 2-4: 1.2, 4-7: 1.3), indicating
high reliability and minimal retransmissions, with no link
exceeding the repair threshold. Using Random Forest
classification and LSTM-based lifetime prediction, each link
was further assessed for stability and predicted longevity,
and all passed the ML filter, ensuring they will remain stable
for future transmissions. The Ant Colony Optimization
(ACO) algorithm then evaluated all valid routes, summing
their ETX values, and found that this path had the lowest
total ETX (4.0) compared to alternatives like 1-3-5-7 (4.6),
resulting in greater pheromone reinforcement in the ACO
process due to its efficiency. By integrating link quality
metrics, predictive ML analytics, and ACO optimization, the
protocol ensures the chosen path is highly reliable, stable,
and efficient - maximizing packet delivery while minimizing
retransmissions and route breaks.

Results and Discussion

Table 8: Throughput (kbps)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO MOAOM DV AOMDVET XACO AOMDV
20 110 130 135 125 138 145
40 200 220 230 215 245 260
60 280 300 315 295 335 355
80 340 360 375 355 390 410
100 380 400 415 390 435 460
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Route Discovery Time (in seconds) - Proposed
IAOMDYV vs Other Protocols

Table 8 and Figure 5 show the Route Discovery Time for
each routing protocol, including the proposed IAOMDYV,
was calculated through extensive simulation using a custom
network environment configured to reflect realistic MANET
conditions. The simulation was conducted for varying node
densities (20 to 100 nodes) randomly deployed over a fixed
geographical area with uniformradio ranges and a mobility
model such as Random Waypoint. For each simulation
scenario, the route discovery process was initiated by
generating Route Request (RREQ) packets from a source
node to a randomly chosen destination. The time duration
between the initial broadcast of the RREQ and the receipt
of the corresponding Route Reply (RREP) was measured to
compute the Route Discovery Time.

The IAOMDYV framework effectively minimizes route
discovery latency by combining ETX-based link filtering,
machine learning-based link stability prediction, and
ACO-driven path optimization, thereby ensuring faster
convergence to stable and reliable routes compared to both
conventional and enhanced AOMDV protocols.

Through Put

Table 9illustrates the throughput performance of different
AOMDV-based routing protocols under varying node
densities. The proposed IAOMDV consistently demonstrates
superior performance compared to the other protocols in
all evaluated scenarios.

Packet Delivery Ratio (PDR)

Table 10 shows the performance of Packet Delivery Ratio
(PDR) of different AOMDV-based routing protocols as
network size increases. PDR reflects the percentage of data
packets successfully received at the destination relative to
the total packets sent.

The improvement is attributed to IAOMDV'’s intelligent
route selection mechanism, which combines ETX-based
link quality estimation, LSTM-based link lifetime prediction,
and ACO-based path optimization. By proactively filtering
unstable links and dynamically adapting routes, the
protocol minimizes packet loss and retransmissions, thereby
enhancing reliability and delivery efficiency, particularly
under dense or highly mobile network conditions.

Packet Delivery Ratio (PDR) in %

—e— AOMDVGA
= AMPOAOMDV
—a— AOMDVACOPSO
— MOMOMDY
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Packet Delivery Ratio (PDR} %
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Figure 7: Packet Delivery Radio vs Number of Nodes

End-to-End Delay (ms)

Table 11 and Figure 8 show the End-to-End Delay (E2E)
performance of various routing algorithms under different
network sizes. The proposed IAOMDV achieves the
lowest delay by combining Random Forest-based link
filtering, LSTM-based lifetime prediction, and ACO-based
path selection, thereby minimizing route repairs and
retransmissions for more efficient MANET routing.

Energy Consumption

Table 12 illustrates the energy consumption results for
various routing protocols with increasing node density.
Energy consumptionisacritical metricin MANETSs, particularly
forbattery-constrained nodes. The proposed IAOMDV shows
the lowest energy usage across all configurations.

This efficiency stems from the algorithm’s ability to
proactively eliminate unstable links using ETX and machine
learning models (Random Forest for classification and
LSTM for prediction), minimizing the need for frequent
retransmissions or route discoveries. Additionally, ACO’s
reinforcement mechanism favors long-lasting, high-quality
paths, which further reduces control overhead and power
drain. Consequently, IAOMDV extends network lifetime
while ensuring reliable communication. Figure 9 illustrates
the energy consumption (in Joules) across different node
counts. The proposed IAOMDV protocol demonstrates
significantly lower energy consumption compared to other
approaches.

Table 18 summarizes the performance gains of the
proposed IAOMDV protocol compared to the traditional
AOMDVGA across five vital network parameters. The

Table 9: Packet Delivery Ratio (PDR) in %

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO ~ MOAO MDV AOMDVE TXACO IAOM DV
20 88.5 90.2 91.3 89.6 92.0 94.1
40 85.2 87.6 88.9 86.5 90.3 93.0
60 81.6 84.5 85.7 83.2 88.1 91.2
80 784 80.3 82.0 79.5 85.2 89.4
100 74.1 77.0 789 76.2 823 87.0
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Table 10: End-to-End Delay (ms)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO ~ MOAOMDV AOMDVETX ACO IAOM DV

20 125 118 110 115 102 96

40 140 132 125 130 115 106

60 162 150 138 145 127 115

80 180 168 155 160 142 126

100 195 183 170 178 158 138

Table 11: Energy Consumption (Joules)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO ~ MOAOMDV AOMDVETX ACO IAOM DV

20 18.5 17.2 16.8 17.0 15.4 14.2

40 32.0 30.6 29.8 30.0 27.3 25.1

60 455 43.0 41.2 425 38.1 356

80 61.0 584 56.0 57.0 50.5 473

100 753 72.0 69.1 71.5 62.4 58.2
Table 12: Summary of Performance Improvement of IAOMDV over AOMDVGA

Performance metric Unit AOMDVGA (Avg) Proposed IAOMDV (Avg) (% Improvement)

Route Discovery Time Seconds 4.54 2.7 40.5% |

Throughput kbps 168.2 210.6 25.2% 1

Packet Delivery Ratio % 81.56 90.94 11.5% 1

End-to-End Delay ms 160.4 116.2 27.5% |

Energy Consumption Joules 46.46 36.08 22.4% |

End-to-End Delay (ms)

Energy Consumption (joules)
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Figure 8: End-End Delay vs Number of Nodes

proposed method achieves a 40.5% reduction in route
discovery time, primarily by filtering weak links early using
ETX and predictive ML models. Throughput increases by
25.2%, reflecting better bandwidth utilization through stable
and optimized routing.The packetdeliveryratioimproves by
11.5%, thanks to predictive filtering and proactive rerouting.
In terms of end-to-end delay, the IAOMDV framework shows
a 27.5% reduction, enhancing real-time responsiveness.
Finally, energy consumption drops by 22.4%, validating
IAOMDV's suitability for energy- aware MANET applications.

—e— SOMDVGA
*— AMPOAOMDV
70 | —#— AOMDVACOFSO
—e— MOAOMDV
—e— AOMDVETXACO
—e— Proposed IAOMDV

Energy Consumption (Joules)

60
Number of Nodes

Figure 9: Energy Consumption Vs Number of Nodes

Conclusion

The proposed work suggested the framework IAOMD,
an intelligent multipath routing protocol that combines
the advantages of both AOMDV, ETX, ACO, and Machine
Learning models LSTM and Random Forest). The new
framework to routing which combines elements such as bio-
inspired optimization, link quality assessment and predictive
analytics, significantly improves the adaptability and
reliability of routing in highly dynamic MANET environments.
Results from simulations conducted with NS-3 showed that
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IAOMDYV is superior to the standard versions of AOMDV in
terms of route discovery time, throughput, packet delivery
ratio, end-to-end delay, and energy consumption. The
above improvements reflect the robustness of the protocol
in terms of its stable and energy efficient way of providing
communication that also scales with increased densities
of the nodes. It is concluded that IAOMDV represents a
resilient and intelligent approach for mission critical and
energy sensitive MANET applications such as disaster relief,
military communication and emergency rescue operations.
Improvements to the framework in terms of lightweight
online learning capabilities, better QoS support and
validation through real testbeds will be pursued in the
future in order to make it more applicable and practical in
a heterogeneous and large-scale MANET.
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