
Abstract
Mobile Ad Hoc Networks (MANETs) are decentralized, infrastructure-less wireless networks in which nodes function simultaneously 
as end devices and routers, enabling the dynamic establishment and maintenance of communication paths as required. One of the 
fundamental problems in MANETs is that links are prone to failure owing to, link breakage due to energy drain, node mobility, and 
changing environmental conditions. While the Ad hoc On-demand Multipath Distance Vector, AOMDV protocol, offers multipath fault 
tolerance, it is dependent upon hop count and is therefore also subject to link failures. In order to overcome this, link quality metrics, 
such as Expected Transmission Count, ETX, and bio-inspired optimization algorithms, such as Ant Colony Optimization, ACO have been 
investigated. Recent advancements in machine learning, particularly in the realm of predictive models such as Long Short-Term Memory 
networks and methods of ensemble learning like Random Forests, present promising options for link quality prediction that considers 
historical and real-time data in a more dynamic fashion. The goal of this proposal is to combine AOMDV, ACO, ETX, LSTM, Random 
Forests, and Predictive Analytics into one intelligent multipath routing protocols for MANETs.
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Introduction
MANETs are decentralized wireless network system that 
operate without fixed infrastructure, enabling wireless 
communication among the mobile nodes. Routing protocols 
for these types of networks are challenging to design due 
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to the dynamism of their topology, resource constraints, 
and non- deterministic wireless links. This high dynamism 
is usually not handled adequately by predictable routing 
protocols, which can produce higher packet loss, higher 
latency and reduced overall network reliability (Alattas, 
2021).

The Ad Hoc On-Demand Multipath Distance Vector 
(AOMDV) routing protocol is commonly employed to 
address these challenges. The purpose of AOMDV, an 
extension of the AODV protocol, is to reduce the impact of 
route failures by finding several loop-free and discontinuous 
pathways between the source and destination. In highly 
dynamic network environments, this multipath competency 
improves the communication efficiency and reliability 
overall, supports load balancing, and strengthens fault 
tolerance. The main disadvantage is that, even when AOMDV 
implements multiple routes, the metrics used for route 
selection remain the same: the simple hop count, which 
ignores more complex link parameters like node mobility, 
energy status, link signal strength/stability, etc.

In this manner, the selected routes in AOMDV are still 
prone to frequent breaks, especially in highly dynamic 
MANET scenarios, resulting in packet loss, higher latency 
and increased signalling overhead

(Marina & Das, 2001) and (Marina & Das, 2006). Machine 
learning has also been proposed as an important technique 
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for MANET routing, particularly when combined with these 
methods. Predicting link quality and lifetime using network 
metrics and historical information can assist in making 
proactive routing decisions. The choice of neural networks 
and other forms of complex regression allows for prediction 
of link failures, determining the best paths to be taken, and 
overcoming resource bottlenecks (Shao, Wang, Liu, & Zhu, 
2022).

By constructing multiple routes from source to 
destination, multipath routing protocols provide an effective 
means of ensuring reliability and fault tolerance. The idea of 
combining bio-inspired approaches with machine learning 
based predictive link analytics is to choose and preserve 
the optimal routes, cope with unknown contingencies, and 
eventually enhance the security, reliable connectivity, and 
energy efficiency in MANETs.

To overcome these challenges, biologically inspired 
algorithms that emulate natural processes, such as ant 
colony optimization and swarm intelligence, are increasingly 
being used to design adaptive and robust routing 
protocols for MANETs. These bio-inspired protocols take 
inspiration from features like distributed decision-making 
or adaptability found in nature, to survive with the dynamic 
network topology and improve routing performance (Da 
Costa Bento & Wille, 2020).

This research work proposed an enhanced AOMDV 
protocol that is integrated with ML- based link prediction. 
A ML model is trained on these to predict the probability 
of a link to break given some mobility, signal and traffic 
features. During route discovery AOMDV combines these 
predictions to give preference to stable links, while keeping 
multipath routes diversity. This technique is expected to 
achieve better packet delivery ratio, route discovery time, 
and routing overhead than AOMDV.

Related Works
AOMDV (Marina & Das, 2001) provides multipath fault 
tolerance, its reliance on hop count as the primary routing 
metric limits its flexibility. ETX (De Couto, Aguayo, Bicket, & 
Morris, 2003) is a widely used metric for link delivery success 
measurement and quality of links in wireless networks. 
Ant Colony Optimization techniques (Rajesh et al., 2015) 
have used ACO in the context of multipath routing, where 
different paths are found with some probability. There are 
some recent works that apply machine learning techniques 
to improve the routing in MANETs.

(Jiang, Wu, & Yin, 2020) investigates energy-efficient 
transmission scheduling in multi-hop real-time WSNs 
using Dynamic Modulation Scaling (DMS). Unlike previous 
theoretical studies, it presents the primary empirical 
evaluation of DMS-enabled topology control using SDR 
hardware, verbalizes the problem as an optimization 
model, and suggests two heuristics to minimize energy 
consumption while conserving performance. (Qiu et al., 

2019) introduced a learning-based opportunistic routing 
scheme that adapts to dynamic links, improving delivery, 
delay, and energy efficiency in wireless networks.

(Zhang et al., 2022) proposed to explore hybridization 
between ML models and on demand routing and they 
emphasize the advantages of hybridization between ML and 
traditional protocols. Yet, AOMDV has never been integrated 
with a combined stack of ACO, ETX and advanced machine 
learning methods such as LSTM and Random Forests to 
develop a single predictive multipath routing framework.

Dhinakaran et al. introduced Bat-Optimized Link State 
Routing (BOLSR), a combination of the proactive OLSR 
routing protocol and Bat Algorithm to discover routes 
that consumes lesser energy. Selection criteria are based 
on the energy consumption and the path length, which 
improves the routing performance in highly dynamic MANET 
(Dhinakaran, Sankar, Raja, & Jasmine, 2023). In the work of 
Banerjee et al, a Swarm Intelligence Enhanced AOMDV, an 
improved multipath routing protocol based on the extension 
of AOMDV with ACO and Bat Algorithm metaheuristics, 
was presented. The protocol considers factors such as link 
availability, node mobility, queue delay and bit error rate 
(BER) to determine stable and reliable of routes (Banerjee, 
2019). Varun Kumar et al. presented PSO-BLAP, which uses 
Particle Swarm Optimization and fuzzy logic to predict link 
quality and bandwidth availability. It supports dynamic 
rerouting in case of link failures and therefore it allows a 
good multipath communication 	

(Sheikhan & Hemmati, 2012) proposed a PSO-optimized 
Hopfield Neural Network multipath routing scheme that 
uses Link Expiration Time (LET) estimation to build node- 
and link-disjoint paths for improved reliability in highly 
mobile networks. PARRoT (Predictive Ad-hoc Routing 
with Reinforcement Learning and Trajectory Knowledge), 
proposed by Benjamin Sliwa et al. , consists of a combination 
of reinforcement learning agents and mobility trajectory 
prediction. This method is to predict, in advance, future 
connectivity patterns, which greatly increase the robustness 
of the routes and reduces the latency (Sliwa, Schüler, 
Patchou, & Wietfeld, 2020).

DeepCQ+, a routing protocol that utilizes multi-agent 
deep reinforcement learning (MADRL), was proposed by 
Saeed Kaviani et al. DeepCQ+ makes no use of thresholds 
as required in classic Q-learning techniques, thus improving 
adaptability, lowering overhead, and achieving higher 
throughput in different mobility and traffic patterns 
situations (Kaviani et al., 2021).

PEAR (Predictive Energy-Efficient Adaptive Routing), 
a predictive analytics protocol from Neelam et al. can 
dynamically adapt in real-time to topological changes 
within the network optimizing the energy consumption 
and improving routing stability. (Banu, Surputheen, and 
Rajakumar, 2025) proposes AOMDV-ETXACO, an enhanced 
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MANET routing protocol that makes use of Expected 
Transmission Count (ETX) in order to provide an estimation 
of the reliability of links, and Ant Colony Optimization (ACO) 
to select multipath. When tested using a node density of 
between 20 to 100 in NS-3, it outperforms existing AOMDV 
variants with respect to energy efficiency, throughput, end-
to-end delay and packet delivery ratio.

Proposed Methodology
This section proposes a novel multipath routing framework 
for Mobile Ad-hoc Networks (MANETs), which integrates Ant 
Colony Optimization with the Expected Transmission Count 
(ETX) metric, supported by predictive analytics. The primary 
objective of the framework is to enhance network reliability 
and efficiency by improving route stability, optimizing 
route discovery, increasing throughput and packet delivery 
ratio, minimizing end-to-end delay, and reducing energy 
consumption. Collectively, these improvements contribute 
to superior overall network performance in highly dynamic 
and resource-constrained MANET environments.

Conventional MANET routing protocols often struggle to 
maintain reliable communication due to inherent challenges 
such as limited energy resources, fluctuating link quality, 
and rapidly changing network topologies. To address 
these limitations, the proposed approach employs Ant 
Colony Optimization (ACO), a nature-inspired optimization 
technique that simulates the foraging behavior of ants. By 
leveraging pheromone trails and local heuristic information, 
ACO is capable of efficiently identifying multiple optimal 
paths, thereby providing a distributed and adaptive solution 
for route discovery in mobile networks

To ensure that the selected routes are not only shortest 
but also reliable, the ETX metric is incorporated into 
the protocol. ETX represents the estimated number of 
transmissions, including retransmissions, required for a 
packet to be successfully delivered over a link. By integrating 
ETX into the ACO-based path selection process, the protocol 
favors routes with higher link quality and lower transmission 
costs, thereby enhancing reliability and minimizing end-to-
end delay.

In this method, there is a predictive link analytics step, 
where the prediction of a link’s stability is made from 
historical data on mobility, signal strength and previously 
observed ETX values. This is a predictive approach that 
allows the proactive maintenance of the route, and it is 
because of this that the protocol can dynamically adjust to 
link degradation and prevent frequent route failures.

The combination of bio-inspired optimization (ACO), 
quality-aware metrics (ETX) and machine learning- based 
prediction offers a routing protocol able to perform 
efficiently multipath, have reduced control overhead and 
increased PDR . Subsequent sections describe the various 
parts of the system, such as the assumptions on the network, 
the route discovery process, ETX calculation, the ACO 

process for path evaluation, and the model for link stability 
predictions. The flowchart of Intelligent AOMDV (IAOMDV) 
Framework is as shown in Figure 1.

Objectives
•	 Design an intelligent multipath routing protocol that 

combines AOMDV with bio-inspired optimization (ACO), 
link quality assessment (ETX), and ML-based predictive 
analytics

•	 Develop a ML model - a hybrid of LSTM and Random 
Forest - that predicts link stability and route lifetime by 
analyzing both real-time signals and past node and link 
data, like the last hour’s connection drops.

•	 Integrate ACO to improve route selection by steering 
traf f ic toward the high-quality paths based by 
pheromone trails and predictive link scores.

•	 Evaluate the performance of the proposed protocol 
through NS3 simulation in various MANET scenarios.

Algorithm: Intelligent AOMDV (IAOMDV) Framework 
Input:
Source S, Destination D
Network topology N
ML models (Random Forest, LSTM) ACO parameters: α, β, ρ
ETX measurement parameters Min_Lifetime_Threshold

Output:
Selected route from S to D with robust performance

Route Discovery using AOMDV
Initiate AOMDV to find multiple disjoint paths between S 
and D
For each discovered link li:
Measure ETX(li) using probe packets
Store ETX(li) in neighbor table
end for

ML-Based Link Quality Filtering
For each li in neighbor table:
Extract feature vector Xi(t)

Figure 1. Flowchart of IAOMDV
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Class ← RandomForest_Classify(Xi(t))
if Class == “Unstable” then
Mark li as BLOCKED
continue
end if
Historical sequence Hi ← [Xi(t-k)...Xi(t)]
Predicted_Lifetime ← LSTM_Predict(Hi)
if Predicted_Lifetime < Min_Lifetime_Threshold 
then
Mark li as BLOCKED
end if
end for

Filter links
Validated link set V ← neighbors not BLOCKED

ACO-Based Path Selection
For each li ∈ V:
Initialize pheromone τ(li) ← τ0
end for
while data packets to forward do
For each li ∈ V:
Compute:
P(li) = [ τ(li)^α * η(li)^β ] / sum_over_V ( τ(lj)^α * η(lj)^β )
Select next hop li with probability P(li)
Forward data packet on li
end while

​Pheromone Update
Periodically:
For each li ∈ V:
τ(li) ← (1 - ρ) * τ(li)
end for
Upon successful packet delivery:
For used path l_success:
τ(l_success) ← τ(l_success) + Δτ
end periodically

Route Maintenance
Monitor ETX changes in real-time
if ETX(li) exceeds threshold:
Trigger local repair or path switch
end if

The Intelligent AOMDV (IAOMDV) is a version of the 
AOMDV routing protocol specifically for MANETs. This work 
combines estimation of link qualities (ETX), machine learning 
(Random Forest, LSTM) to predict links, and ACO for the 
intelligent selection of a path. Let’s analyze and explain how 
the route discovery phase is and how nodes take part in.

Route Discovery using AOMDV

Line 1–2
The process begins by invoking the AOMDV routing protocol 
to discover multiple node- disjoint or link-disjoint paths 

between the source node S and the destination node D.

Line 3–6
For each link li found in the discovered paths:
•	 ETX is measured using probe packets.
•	 These ETX values, which reflect link reliability, 

are stored in the node’s neighbour table for later 
evaluation.

ML-Based Link Quality Filtering

Line 8 - 10
Each link’s real-time feature vector Xi(t)—which may include 
parameters like ETX, signal strength, delay, and mobility—is 
extracted. The Random Forest classifier is applied to classify 
the link as either “Stable” or “Unstable”.

Line 11–14
If a link is classified as “Unstable”, it is immediately marked as 
BLOCKED and removed from further consideration.

Line 15–19
For remaining links:
•	 A time-series sequence of features, Hi = [Xi(t−k)...Xi(t)], 

is created.
•	 The expected lifetime of the link is predicted by LSTM 

(Long Short-Term Memory) model.
•	 If the estimated link lifetime falls below the Min_

Lifetime_Threshold, the link is classified as BLOCKED 
owing to its potential unreliability.

Line 20–22
After filtering, the remaining validated links (not blocked 
by ML filtering) form the set V, which will be used for route 
selection.

Machine Learning Model Implementation
The proposed IAOMDV framework integrates two machine 
learning models - Random Forest (RF) and Long Short-
Term Memory (LSTM) - to improve link quality evaluation 
and routing decisions in MANETs. The RF model classifies 
network links either Stable or Unstable categories, while the 
LSTM model predicts the expected lifetime of each link 
based on historical performance data. By combining these 
models, the framework enables proactive link selection 
and route optimization effectively mitigating performance 
degradation before it occurs.

Dataset Preparation
A dataset of approximately 50,000 link samples was 
collected from multiple NS-3 simulation runs under 
varying node densities ranging from 20 to 100 nodes. Each 
sample represents 10 seconds of link activity and includes 
performance measurements recorded during simulation.

Feature Selection and Pre-processing
The models were trained using key network performance 
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features:
•	 ETX (Expected Transmission Count) – measures link 

reliability.
•	 Signal-to-Noise Ratio (SNR) – indicates link signal quality.
•	 Link Delay – measures average transmission delay.
•	 Node Mobility Speed – captures relative movement 

patterns.
•	 Hop Count – number of hops in the route.
•	 Residual Energy – remaining battery power of the nodes.

Before training, all features were normalized to a [0, 1] 
range, and short-term fluctuations in measurements were 
smoothed using a moving average filter to reduce noise.

Model Architecture and Hyper Parameters

Random forest
Configured with 100 decision trees, a maximum depth of 
15, and a minimum of 5 samples per leaf node to balance 
classification accuracy and computation time.

LSTM
Configured with two layers, 64 hidden units, a sequence 
length of 5 timesteps, and trained using the Adam optimizer 
with a learning rate of 0.001.

Training and Validation Process
The dataset was split into 70% training, 15% validation, 
and 15% testing sets. For the RF model, evaluation metrics 
included accuracy, precision, recall, and F1-score. For the 
LSTM model, performance was assessed using Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE).

Integration with NS-3
Both models were trained offline using Python-based 
frameworks — Scikit-learn for RF and TensorFlow/Keras for 
LSTM. The trained model weights were then integrated into 
NS-3 via Python bindings to enable real-time predictions 
during simulation. The models perform link evaluations 
every 5 seconds for all active links.

Computation Overhead
The RF model achieves an average prediction time of 0.3 
milliseconds per link, while the LSTM model requires 1.2 
milliseconds per link, based on testing with an Intel i5 CPU. 
This low computational cost makes the approach feasible 
for real-time MANET operations.

Adaptation Mechanism
In its current form, the system does not perform online 
learning during simulation. Instead, models are retrained 
offline after significant scenario changes (e.g., mobility 
pattern variations or network density changes) and then 
redeployed in the simulation environment.

This integration of RF and LSTM ensures that only reliable 
and long-lasting links are included in the routing process, 
significantly reducing route breakages, lowering control 

overhead, and improving packet delivery performance.

ACO-Based Probabilistic Path Selection

Line 24–26
For each link in the validated set V, the pheromone value τ(li) 
is initialized to a constant τ0. This value indicates the initial 
attractiveness of each link.

Line 28–33
During data transmission:
•	 For each link li, the selection probability P(li) is computed 

using the ACO probabilistic formula:

			   Eq. (1)

•	 τ(li) is the pheromone value (learned path preference),
•	 η(li) is the heuristic desirability, often the inverse of ETX 

(1/ETX),
•	 α and β are ACO parameters controlling the importance 

of pheromone vs. heuristic.
The next hop is selected probabilistically based on P(li), 
ensuring load balancing and adaptability and data packets 
are forwarded through the selected link.

Pheromone Update Mechanism

Line 36–39
At periodic intervals, pheromone evaporation is applied to 
prevent stale paths from dominating:
𝜏(𝑙𝑖) ← (1 − 𝜌) ⋅ 𝜏(𝑙𝑖)				    Eq. (𝟐)
where ρ is the evaporation rate, controlling how quickly 
outdated paths lose priority. 

Line 40–42
Upon successful packet delivery, the pheromone level for 
the utilized path is reinforced:
τ(l_success) ← τ(l_success) + Δτ			   Eq. (3)

where Δτ represents a positive reward for a reliable 
delivery path, promoting its future selection.

Route Maintenance
The protocol continuously monitors real-time ETX of active 
links:
•	 If any link’s ETX exceeds a certain threshold, indicating 

degradation, the protocol triggers local route repair 
or switches to an alternate path from the available 
multipath set.

•	 This proactive maintenance minimizes packet drops and 
ensures consistent quality of service.

Experimental Setup
To evaluate the performance of the proposed IAOMDV, the 
following experimental setup was designed, specifying 
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the simulation parameters, network conditions, and 
performance metrics considered.

Implementation of Route Discovery Phase:

Initial Network Graph
A simulated Mobile Ad-hoc Network (MANET) is initialized 
with 9 nodes, representing mobile devices capable 
of wireless communication without relying on fixed 
infrastructure. The graph shows the initial MANET topology 
with three completely disjoint paths between the source 
node (1) and destination node (7).
Path 1 (green): 1 → 2 → 4 → 7
Path 2 (orange) : 1 → 3 → 5 → 7
Path 3 (blue): 1 → 6 → 8 → 9 → 7

This is the AOMDV route discovery phase output, where 
multiple parallel routes are identified for redundancy and 
reliability.

From the Source (Node 1) to the Destination (Node 7), 
the AOMDV (Ad hoc On-demand Multipath Distance Vector) 
routing protocol discovers three completely disjoint paths:
Path 1: 1 → 2 → 4 → 7 → This is a relatively short and direct 
path, involving only 3 hops.
Path 2: 1 → 3 → 5 → 7 → Another short route, also with 3 hops, 
but using entirely different intermediate nodes compared 
to Path 1.
Path 3: 1 → 6 → 8 → 9 → 7 → A longer route with 4 hops, 
which may offer redundancy if the other two paths fail.
The existence of multiple disjoint paths ensures fault 
tolerance, meaning that if one path fails due to link 
breakage or node movement, others can take over without 
rediscovering routes.

Route Discovery Table (AOMDV Phase)
The table 1 shows the multiple disjoint routes discovered 
between the Source Node (1) and the Destination Node (7) 
during the AOMDV (Ad hoc On-demand Multipath Distance 
Vector) routing protocol phase.

ETX Table and Formula
ETX Formula:

 				    (Eq. 4)
	
Where:
•	 df = Forward delivery ratio – the probability that a 

packet sent from A to B is successfully received.
•	 dr = Reverse delivery ratio – the probability that the 

acknowledgment (ACK) sent from B to A is successfully 
received. The ETX values are calculated using equation 
4 (Table 4).

ML-Based Link Filtering (Simulated with Threshold: 
ETX > 2.5)
The table 5 and Figure 4 illustrate a filtered MANET topology 
where each node represents a mobile device, and links are 
evaluated for routing suitability.
Two main criteria are used for filtering:
•	 ETX (Expected Transmission Count) – measures link 

reliability.
•	 Machine Learning (Random Forest & LSTM) – predicts 

link stability and lifetime.
Valid links (green solid lines) have low ETX and are 

ML-classified as stable, making them suitable for routing 

Figure 2:. Initial network graph with three disjoint paths

Table 2: Route Discovery

Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

1 2 4 7 -

1 3 5 7 -

1 6 8 9 7

Table 1: Missing Caption

Parameter Value

Simulator NS-3.38

Simulation Time 500 seconds

Number of Nodes 20, 40, 60, 80, 100

Simulation Area 1000 m × 1000 m

Mobility Model Random Waypoint

Node Speed Uniform [1, 20] m/s

Pause Time 0 seconds

Transmission Range 250 meters

Channel Bandwidth 2 Mbps

Operating 
Frequency

2.4 GHz

Propagation Model Two-Ray Ground

Traffic Type UDP – Constant Bit Rate (CBR)

Packet Size 512 bytes

Data Rate 4 packets/sec

MAC Protocol IEEE 802.11 DCF

Simulation Runs 10 runs with different random 
seeds
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Table 3: Link Quality Table

Link ETX Value

1–2 1.5

2–4 1.2

4–7 1.3

1–3 1.7

3–5 1.1

5–7 1.8

1–6 2.7

6–8 1.6

8–9 1.4

9–7 2.5

 

Figure 3: Network Graph with ETX Paths

Table 4: ML-Filtered Link ETX Table

Link ETX ML filter result

1–2 1.5 VALID

2–4 1.2 VALID

4–7 1.3 VALID

1–3 1.7 VALID

3–5 1.1 VALID

5–7 1.8 VALID

1–6 2.7 BLOCKED

6–8 1.6 VALID

8–9 1.4 VALID

9–7 2.5 VALID

Figure 4: ML Based Link Filtering Visualization

Table 5: ML-Filtered Path ETX Table

Path Sum of ETX

1–2–4–7 4.0

1–3–5–7 4.6

1–6–8–9–7 BLOCKED (due to 1–6)

Table 6: Link Maintenance Table

Link ETX Maintenance action

1–2 1.5 Stable

2–4 1.2 Stable

4–7 1.3 Stable

1–3 1.7 Stable

3–5 1.1 Stable

5–7 1.8 Stable

1–6 2.7 Trigger Repair

6–8 1.6 Stable

8–9 1.4 Stable

9–7 2.5 Stable

(e.g., 1–2, 2–4, 4–7, 1–3–5–7). The blocked link (1–6) is shown 
as a red dashed line due to high ETX and poor predicted 
stability. This filtering ensures only reliable paths are 
considered in the routing phase, improving overall network 
performance.

ACO-Based Path Selection (ETX Sum)
Selected Path: 1 → 2 → 4 → 7 (lowest ETX, all links valid)

From table 6, the ACO-based path selection process (ETX 

Sum), the routing algorithm determines the most reliable 
and efficient path from the source to the destination after 
the ML-based filtering stage. For Path 1–2–4–7, the ETX 
values of each link are summed: (1–2 = 1.5) + (2–4 = 1.2) + 
(4–7 = 1.3), giving a total of 4.0. Since all links are valid, this 
path is considered. For Path 1–3–5–7, the ETX sum is (1–3 = 
1.7) + (3–5 = 1.1) + (5–7 = 1.8) = 4.6, with all links valid, so 
it is also considered. However, Path 1–6–8–9–7 is blocked 
because link 1–6 was marked invalid during ML filtering due 
to a high ETX of 2.7 and low predicted stability, so the ACO 
skips it entirely. After comparing the total ETX values of the 
valid paths, the algorithm selects Path 1–2–4–7, as its ETX 
of 4.0 is the lowest, indicating it likely requires the fewest 
transmissions. This ensures the route balances minimal 
transmission effort with link reliability, aligning with ACO’s 
optimization goal.
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Table 7: Route Discovery Time (in Seconds)

No. of Nodes AOMDV GA AMPOA OMDV AOMDVA COPSO MOAO MDV AOMDVET XACO IAOMDV

20 1.5 1.2 1.2 1.3 1.2 1.1

40 3.2 2.9 2.7 3.0 2.1 1.9

60 4.5 4.0 3.8 4.2 2.8 2.5

80 6.0 5.3 5.1 5.5 3.4 3.0

100 7.5 6.8 6.5 7.0 4.0 3.5

Route Discovery Time = Time (RREP received) – Time (RREQ sent)

Figure 5: Route Discovery Time vs Number of Nodes

Table 8: Throughput (kbps)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO MOAOM DV AOMDVET XACO AOMDV

20 110 130 135 125 138 145

40 200 220 230 215 245 260

60 280 300 315 295 335 355

80 340 360 375 355 390 410

100 380 400 415 390 435 460

Figure 6: Throughput vs Number of Nodes

Route Maintenance Table
In Table 7, the majority of network links—specifically, 1–2, 
2–4, 4–7, 1–3, 3–5, 5–7, 6–8, 8–9, and 9– 7—display moderate 
ETX values within the range of 1.1 to 2.5. These links are 
classified as stable, do not necessitate intervention, and 
remain suitable for routing purposes. However, the link 1–6 
has a relatively high ETX of 2.7, indicating poor reliability, 
and is flagged with a “Trigger Repair” status, prompting the 
system’s route maintenance mechanism to either attempt 
a local repair by finding an alternative nearby route or to 
avoid this unstable link altogether in future path selections.

Final Selected Path Graph
The final chosen path for packet forwarding is: 1 → 2 → 4 → 7

The final selected path graph represents the outcome 
of the IAOMDV routing process after all filtering and 
optimization stages, resulting in the choice of route 1 → 
2 → 4 → 7. This path was selected because all its links 

have low ETX values (1–2: 1.5, 2–4: 1.2, 4–7: 1.3), indicating 
high reliability and minimal retransmissions, with no link 
exceeding the repair threshold. Using Random Forest 
classification and LSTM-based lifetime prediction, each link 
was further assessed for stability and predicted longevity, 
and all passed the ML filter, ensuring they will remain stable 
for future transmissions. The Ant Colony Optimization 
(ACO) algorithm then evaluated all valid routes, summing 
their ETX values, and found that this path had the lowest 
total ETX (4.0) compared to alternatives like 1–3–5–7 (4.6), 
resulting in greater pheromone reinforcement in the ACO 
process due to its efficiency. By integrating link quality 
metrics, predictive ML analytics, and ACO optimization, the 
protocol ensures the chosen path is highly reliable, stable, 
and efficient - maximizing packet delivery while minimizing 
retransmissions and route breaks.

Results and Discussion
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Route Discovery Time (in seconds) - Proposed 
IAOMDV vs Other Protocols
Table 8 and Figure 5 show the Route Discovery Time for 
each routing protocol, including the proposed IAOMDV, 
was calculated through extensive simulation using a custom 
network environment configured to reflect realistic MANET 
conditions. The simulation was conducted for varying node 
densities (20 to 100 nodes) randomly deployed over a fixed 
geographical area with uniform radio ranges and a mobility 
model such as Random Waypoint. For each simulation 
scenario, the route discovery process was initiated by 
generating Route Request (RREQ) packets from a source 
node to a randomly chosen destination. The time duration 
between the initial broadcast of the RREQ and the receipt 
of the corresponding Route Reply (RREP) was measured to 
compute the Route Discovery Time.

The IAOMDV framework effectively minimizes route 
discovery latency by combining ETX-based link filtering, 
machine learning–based link stability prediction, and 
ACO-driven path optimization, thereby ensuring faster 
convergence to stable and reliable routes compared to both 
conventional and enhanced AOMDV protocols.

Through Put
Table 9 illustrates the throughput performance of different 
AOMDV-based routing protocols under varying node 
densities. The proposed IAOMDV consistently demonstrates 
superior performance compared to the other protocols in 
all evaluated scenarios.

Packet Delivery Ratio (PDR)
Table 10 shows the performance of Packet Delivery Ratio 
(PDR) of different AOMDV-based routing protocols as 
network size increases. PDR reflects the percentage of data 
packets successfully received at the destination relative to 
the total packets sent.

The improvement is attributed to IAOMDV’s intelligent 
route selection mechanism, which combines ETX-based 
link quality estimation, LSTM-based link lifetime prediction, 
and ACO-based path optimization. By proactively filtering 
unstable links and dynamically adapting routes, the 
protocol minimizes packet loss and retransmissions, thereby 
enhancing reliability and delivery efficiency, particularly 
under dense or highly mobile network conditions.

End-to-End Delay (ms)
Table 11 and Figure 8 show the End-to-End Delay (E2E) 
performance of various routing algorithms under different 
network sizes. The proposed IAOMDV achieves the 
lowest delay by combining Random Forest–based link 
filtering, LSTM-based lifetime prediction, and ACO-based 
path selection, thereby minimizing route repairs and 
retransmissions for more efficient MANET routing.

Energy Consumption
Table 12 illustrates the energy consumption results for 
various routing protocols with increasing node density. 
Energy consumption is a critical metric in MANETs, particularly 
for battery-constrained nodes. The proposed IAOMDV shows 
the lowest energy usage across all configurations.

This efficiency stems from the algorithm’s ability to 
proactively eliminate unstable links using ETX and machine 
learning models (Random Forest for classification and 
LSTM for prediction), minimizing the need for frequent 
retransmissions or route discoveries. Additionally, ACO’s 
reinforcement mechanism favors long-lasting, high-quality 
paths, which further reduces control overhead and power 
drain. Consequently, IAOMDV extends network lifetime 
while ensuring reliable communication. Figure 9 illustrates 
the energy consumption (in Joules) across different node 
counts. The proposed IAOMDV protocol demonstrates 
significantly lower energy consumption compared to other 
approaches.

Table 18 summarizes the performance gains of the 
proposed IAOMDV protocol compared to the traditional 
AOMDVGA across five vital network parameters. The 
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Table 9: Packet Delivery Ratio (PDR) in %

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO MOAO MDV AOMDVE TXACO IAOM DV

20 88.5 90.2 91.3 89.6 92.0 94.1

40 85.2 87.6 88.9 86.5 90.3 93.0

60 81.6 84.5 85.7 83.2 88.1 91.2

80 78.4 80.3 82.0 79.5 85.2 89.4

100 74.1 77.0 78.9 76.2 82.3 87.0

Figure 7: Packet Delivery Radio vs Number of Nodes
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Table 10: End-to-End Delay (ms)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO MOAO MDV AOMDVETX ACO IAOM DV

20 125 118 110 115 102 96

40 140 132 125 130 115 106

60 162 150 138 145 127 115

80 180 168 155 160 142 126

100 195 183 170 178 158 138

Figure 8: End-End Delay vs Number of Nodes

Table 11: Energy Consumption (Joules)

No. of Nodes AOMDV GA AMPOAO MDV AOMDVA COPSO MOAOMDV AOMDVETX ACO IAOM DV

20 18.5 17.2 16.8 17.0 15.4 14.2

40 32.0 30.6 29.8 30.0 27.3 25.1

60 45.5 43.0 41.2 42.5 38.1 35.6

80 61.0 58.4 56.0 57.0 50.5 47.3

100 75.3 72.0 69.1 71.5 62.4 58.2

Figure 9: Energy Consumption Vs Number of Nodes

Table 12: Summary of Performance Improvement of IAOMDV over AOMDVGA

Performance metric Unit AOMDVGA (Avg) Proposed IAOMDV (Avg) (% Improvement)

Route Discovery Time Seconds 4.54 2.7 40.5% ↓

Throughput kbps 168.2 210.6 25.2% ↑

Packet Delivery Ratio % 81.56 90.94 11.5% ↑

End-to-End Delay ms 160.4 116.2 27.5% ↓

Energy Consumption Joules 46.46 36.08 22.4% ↓

proposed method achieves a 40.5% reduction in route 
discovery time, primarily by filtering weak links early using 
ETX and predictive ML models. Throughput increases by 
25.2%, reflecting better bandwidth utilization through stable 
and optimized routing. The packet delivery ratio improves by 
11.5%, thanks to predictive filtering and proactive rerouting. 
In terms of end-to-end delay, the IAOMDV framework shows 
a 27.5% reduction, enhancing real-time responsiveness. 
Finally, energy consumption drops by 22.4%, validating 
IAOMDV’s suitability for energy- aware MANET applications.

Conclusion
The proposed work suggested the framework IAOMD, 
an intelligent multipath routing protocol that combines 
the advantages of both AOMDV, ETX, ACO, and Machine 
Learning models LSTM and Random Forest). The new 
framework to routing which combines elements such as bio-
inspired optimization, link quality assessment and predictive 
analytics, significantly improves the adaptability and 
reliability of routing in highly dynamic MANET environments. 
Results from simulations conducted with NS-3 showed that 



4915	 Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics

IAOMDV is superior to the standard versions of AOMDV in 
terms of route discovery time, throughput, packet delivery 
ratio, end-to-end delay, and energy consumption. The 
above improvements reflect the robustness of the protocol 
in terms of its stable and energy efficient way of providing 
communication that also scales with increased densities 
of the nodes. It is concluded that IAOMDV represents a 
resilient and intelligent approach for mission critical and 
energy sensitive MANET applications such as disaster relief, 
military communication and emergency rescue operations. 
Improvements to the framework in terms of lightweight 
online learning capabilities, better QoS support and 
validation through real testbeds will be pursued in the 
future in order to make it more applicable and practical in 
a heterogeneous and large-scale MANET.

Acknowledgements 
The authors would like to express their sincere gratitude 
to Jamal Mohamed College for providing the necessary 
facilities and support to carry out this research work. We 
also thank our college management, heads, co-researchers, 
colleagues and reviewers for their valuable feedback and 
constructive suggestions, which greatly improved the 
quality of this manuscript. 

References
Alattas, K. A. (2021). A hybrid routing protocol based on bio-

inspired methods in a mobile ad hoc network. International 
Journal of Computer Science and Network Security (IJCSNS), 
21(1).

Banerjee, S. (2019). Role of bio-inspired algorithms for designing 
protocols in MANET: Review. In Proceedings of the 2019 
Cybernetics & Computational Intelligence (CCST) (pp. 1–7). IEEE.

Banu, S. M., Surputheen, M. M., & Rajakumar, M. (2025). Enhanced 
AOMDV-based multipath routing approach for mobile ad 
hoc network using ETX and ant colony optimization. The 
Scientific Temper, 16(6), 4477–4486.

Da Costa Bento, C. R., & Wille, E. C. G. (2020). Bio-inspired routing 
algorithm for MANETs based on fungi networks. Ad Hoc 
Networks, 102, 102248.

De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-
throughput path metric for multi-hop wireless routing. In 
Proceedings of the 9th Annual International Conference on 
Mobile Computing and Networking (MobiCom) (pp. 134–146). 
ACM.

Dhinakaran, D., Sankar, S. M. U., Raja, S. E., & Jasmine, J. J. (2023). 
Optimizing mobile ad hoc network routing using biomimicry 
buzz and a hybrid forest boost. International Journal of 
Advanced Computer Science and Applications (IJACSA), 14(12).

Jiang, H., Wu, J., & Yin, Z. (2020). Link stability prediction-based 
routing for MANETs. Wireless Networks, 26, 2901–2916.

Kanellopoulos, D., & Sharma, V. K. (2020). Power-aware optimization 
solutions for MANETs. Electronics, 9(7), 1129.

Kaviani, S., Ryu, B., Ahmed, E., Larson, K. A., Le, A., Yahja, A., & Kim, 
J. H. (2021). Robust and scalable routing with multi-agent 
deep reinforcement learning for MANETs. Networking and 
Internet Architecture.

Malyadri, N., Ramakrishna, M., Nandalike, R., Chavan, P., Supreeth, 
S., Dayananda, P., & Rohith, S. (2023). A predictive energy-
efficient adaptive routing methodology for mobile ad hoc 
networks. IET Networks, 12(2), 45–57.

Marina, M. K., & Das, S. R. (2001). On-demand multipath distance 
vector routing in ad hoc networks. In Proceedings of the 
Ninth International Conference on Network Protocols (ICNP) 
(pp. 14–23). IEEE.

Marina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath 
distance vector routing. Wireless Communications and Mobile 
Computing, 6(7), 969–988.

Orchu Aruna, D., Sameerunnisa, S. K., & Vedantham, R. (2023). 
Routing in mobile ad hoc networks using machine learning 
techniques. Journal of Wireless Mobile Networks, Ubiquitous 
Computing, and Dependable Applications (JoWUA), 14(4), 
84–95.

Qiu, T., et al. (2019). A learning-based opportunistic routing scheme 
for dynamic wireless networks. IEEE Transactions on Vehicular 
Technology, 68(5), 4702–4715.

Rajesh, R., et al. (2015). ACO-based multipath QoS routing for 
mobile ad hoc networks. Journal of Network and Computer 
Applications, 60, 154–171.

Shao, H., Wang, L., Liu, H., & Zhu, R. (2022). A link prediction method 
for MANETs based on fast spatio-temporal feature extraction 
and LSGANs. Scientific Reports, 12(1), Article 12345.

Sheikhan, M., & Hemmati, E. (2012). PSO-optimized Hopfield 
neural network-based multipath routing for mobile ad hoc 
networks. International Journal of Computational Intelligence 
Systems, 5(3), 568–581.

Sliwa, B., Schüler, C., Patchou, M., & Wietfeld, C. (2020). PARRoT: 
Predictive ad-hoc routing fueled by reinforcement learning 
and trajectory knowledge. Networking and Internet 
Architecture.

Zhang, B., et al. (2022). Machine learning empowered routing in 
ad hoc networks. IEEE Communications Surveys & Tutorials, 
24(1), 1–28.


