
Abstract
Accurate paddy yield prediction remains a vital challenge in agricultural data analytics due to complex climate–soil interactions and 
regional variability. The proposed Climate-Aware Time-Series Ensemble Model (CATSEM) integrates discrete wavelet decomposition, 
exponential weighted smoothing, Kalman filtering, and adaptive ensemble learning to capture temporal dependencies in climatic 
variables. The model preprocesses rainfall, average temperature, and solar radiation through Discrete Wavelet Transform (DWT) for 
trend extraction, followed by Exponential Weighted Moving Average (EWMA) smoothing and Kalman filtering for signal refinement. 
Three base learners Long Short-Term Memory (LSTM), XGBoost, and LightGBM are trained on temporally enhanced features, and their 
outputs are fused using a linear meta-learner. Experimental evaluation demonstrates improved robustness and accuracy with CATSEM. 
The proposed model offers interpretable temporal insights, emphasizing the dominant role of temperature in yield forecasting. CATSEM 
serves as a scalable approach for adaptive agricultural planning under climatic variability.
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Introduction
Agricultural production prediction constitutes an essential 
component of food-security planning, economic forecasting, 
and environmental management. Rice or paddy cultivation, 
occupying more than 160 million hectares worldwide, 
remains highly vulnerable to climatic oscillations, soil 
heterogeneity, and management variability (Hussain et al., 
2020). Accurate paddy-yield forecasting allows policymakers 
to anticipate shortages, regulate procurement, and design 
subsidy mechanisms. Agricultural data are inherently 

nonlinear and non-stationary (Huang et al., 2021), being 
influenced by interacting climatic variables such as rainfall, 
temperature, humidity, and solar radiation, together with 
agronomic inputs such as fertilizer dosage, irrigation 
infrastructure, and soil composition (Wang et al., 2025). 
These complex interdependencies make conventional linear 
models inadequate for robust yield estimation, particularly 
under conditions of climate variability and environmental 
uncertainty (Zhao F et al., 2025).

Traditional yield-forecasting techniques based on 
statistical regression or autoregressive models assume fixed 
relationships between predictors and yield (Zhao X et al., 
2025). Multiple Linear Regression (MLR) and Autoregressive 
Integrated Moving Average (ARIMA) models provide ease 
of interpretation but cannot effectively model nonlinear 
climatic responses or dynamic seasonal dependencies 
(Park et al., 2025; Ayiah et al., 2025). As agricultural datasets 
expanded through satellite remote sensing, weather 
stations, and precision-farming devices, the need for 
adaptive learning algorithms became apparent (Wang & Li 
2025). Machine Learning (ML) emerged as a natural successor 
to statistical forecasting because of its ability to capture 
nonlinear mappings and higher-order feature interactions 
(Mohyuddin et al., 2024).

Among ML approaches, Decision Tree, Random Forest 
(RF), Gradient Boosting (GB), and Support Vector Regression 
(SVR) demonstrated competitive predictive power for yield 
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estimation (Das et al., 2022; Sánchez et al., 2025; Panigrahi 
et al., 2023; Jabed et al., 2024). Random Forest has been 
widely applied to crop yield mapping in heterogeneous 
regions because of its robustness to missing and noisy 
inputs (Das et al., 2022). XGBoost and LightGBM have 
improved generalization and computational efficiency by 
leveraging gradient-based boosting with regularization, 
while deep learning architectures such as Convolutional 
Neural Networks (CNN) and Long Short-Term Memory 
(LSTM) networks have shown remarkable capabilities in 
modeling temporal dependencies in climatic series (Mercy 
et al., 2025). 

Sathya & Gnanasekaran (2023) used Multi-Linear 
Regression (MLR) with Long Short-Term Memory (LSTM) 
neural network to model paddy yield in the Cauvery Delta 
Zone. Their findings established that MLR-LSTM achieved 
the highest predictive accuracy, confirming the superiority 
of nonlinear neural approaches in handling climatic and 
soil heterogeneity

Nikhil et al. (2024) proposed a statistical framework 
emphasizing linear regression analysis combined with 
rainfall and fertilizer indices for regional yield estimation. 
The study emphasized simplicity and interpretability, 
though its performance metrics indicated lower precision 
compared with modern ML models. Collectively, both 
works demonstrate the transition from traditional statistical 
estimation to data-driven neural inference in yield modeling 
for Tamil Nadu agriculture.

Ramesh and Kumaresan (2024) extended the crop 
yield prediction on Indian state dataset using statistical 
framework. Thangavel & Sakthipriya (2024) evaluated 
multiple ML regressors across five South Indian states 
using soil, meteorological, and crop parameters. The Extra 
Trees Regressor achieved superior accuracy, outperforming 
linear and neighbor-based models and reinforcing 
the robustness of tree-based ensembles in non-linear 
agricultural domains

A particularly influential contribution to this transition 
is the work by Abdel-Salam et al. (2024), which introduced 
a hybrid feature-selection and optimization framework for 
crop-yield prediction. The framework combined K-means 
clustering and Correlation-based Feature Selection 
(CFS) with a composite Filter–Wrapper approach using 
Feature Mutual Information Gain (FMIG) and Recursive 
Feature Elimination (RFE). To optimize the SVR model, the 
study incorporated an Improved Crayfish Optimization 
Algorithm (ICOA) for adaptive hyperparameter tuning. 
Finally, it emphasized the need for explainability in model 
construction, aligning agricultural analytics with the 
emerging field of eXplainable AI (XAI). This integration of 
unsupervised clustering, statistical relevance analysis, and 
metaheuristic optimization achieved superior accuracy 
compared with conventional models such as Decision 

Tree, Random Forest, and Gradient Boosting. Reported 
performance reached an R² of approximately 0.57 and 
MAE of 0.15 on benchmark paddy datasets, demonstrating 
notable improvements in efficiency and interpretability.

Despite these strengths, limitations persist in SVR-
ICOA (Abdel-Salam et al. 2024). The hybrid SVR-ICOA 
system remains essentially static, treating yearly records 
as independent samples and overlooking temporal 
interdependence among seasons. The absence of a dynamic 
learning mechanism restricts its ability to capture delayed 
climatic effects, for example, the impact of prolonged 
drought on the following year’s yield. Furthermore, spatial 
variability across districts is treated homogenously, even 
though irrigation patterns and soil characteristics differ 
considerably within the Tamil Nadu region. Finally, while 
the model optimizes hyperparameters efficiently, it does not 
incorporate sequential feedback or continuous adaptation 
as new data become available.

Research Gap
Analysis of the broader literature exposes a recurrent 
absence of explicit temporal modeling in ensemble-based 
yield frameworks. Most models rely on aggregated annual 
or seasonal averages, thereby losing fine-scale temporal 
fluctuations that influence crop physiology. Studies rarely 
apply signal-processing methods to separate trend and 
noise components before feeding data into learning 
algorithms. As a result, transient climatic shocks, sensor 
errors, or missing observations often propagate as noise, 
degrading prediction accuracy.

Another limitation concerns climate adaptability. 
Standard ensemble learners treat all input features with 
equal importance, disregarding inter-seasonal dominance 
shifts for instance, temperature controlling yield during 
flowering but rainfall being critical during germination. 
Without adaptive weighting, predictions become biased 
toward historically dominant features, reducing reliability 
under atypical weather conditions. Moreover, many 
hybrid models emphasize optimization but neglect 
interpretability; thus, agricultural planners cannot discern 
the relative influence of climate variables on yield outcomes. 
Addressing these challenges requires a unified model that 
merges temporal decomposition, adaptive smoothing, and 
interpretable ensemble regression.

Problem Definition
The research focuses on constructing a predictive framework 
capable of integrating climatic variability, temporal 
dependencies, and agronomic attributes for accurate and 
explainable paddy-yield forecasting. The central problem 
statement is formulated as follows:

To design a Climate-Aware Time-Series Ensemble 
Model (CATSEM) that decomposes, smooths, and filters 
climatic variables through Discrete Wavelet Transform 



The Scientific Temper. Vol. 16, No. 12 	 R. Mercy and T. Lucia Agnes Beena	 5394

(DWT), Exponential Weighted Moving Average (EWMA), 
and Kalman Filtering, and subsequently fuses predictions 
from heterogeneous learners within a stacked ensemble 
to enhance robustness and interpretability in paddy-yield 
prediction.

This formulation extends the base hybrid model by 
embedding dynamic temporal learning and adaptive 
climate sensitivity within the ensemble paradigm.

Objectives
The objectives guiding the CATSEM study are:
•	 To extract temporal trends from rainfall, temperature, 

and solar-radiation data using Discrete Wavelet 
Transform for multi-scale decomposition.

•	 To apply Exponential Weighted Moving Average 
smoothing to stabilize climatic sequences and suppress 
random noise.

•	 To refine decomposed signals through Kalman Filtering 
for accurate state estimation under measurement 
uncertainty.

•	 To develop an adaptive stacked ensemble integrating 
L S TM ,  XGBoost ,  and Light GBM learners  for 
comprehensive temporal and nonlinear modeling.

•	 To incorporate SHAP-based interpretability to evaluate 
variable influence and provide transparent decision 
support.

Significance of Study
CATSEM offers a unified modeling architecture that 
bridges three historically distinct domains temporal signal 
processing, ensemble learning, and XAI. The proposed 
framework contributes to agricultural data science in 
multiple ways. By integrating DWT, EWMA, and Kalman 
Filtering, it isolates the long-term climatic signal from 
short-term fluctuations, thereby reducing input uncertainty 
before learning. The ensemble component exploits the 
strengths of heterogeneous learners: LSTM captures 
sequential dependencies; XGBoost models complex feature 
interactions; and LightGBM ensures scalability for large 
datasets. The fusion of their outputs through a meta-learner 
minimizes residual error and yields robust predictions across 
seasons.

From a theoretical standpoint, CATSEM operationalizes 
the concept of climate awareness by dynamically adjusting 
feature significance through temporal smoothing and 
model-level weighting. This adaptive behavior allows the 
system to generalize across drought, monsoon, and post-
monsoon conditions. From an applied perspective, the 
framework enhances interpretability through SHAP analysis, 
enabling agronomists to identify dominant climatic drivers 
and validate them against empirical field knowledge. Such 
interpretability not only improves trust in AI-based systems 
but also aligns predictive analytics with policy frameworks 
emphasizing transparency and accountability.

The significance of this research extends beyond algorithmic 
innovation. Reliable paddy-yield forecasting facilitates 
informed decision-making in irrigation scheduling, fertilizer 
management, and market stabilization. Early warnings of 
potential yield deficits can assist regional authorities in 
mobilizing contingency measures, while overproduction 
forecasts help prevent price collapses and post-harvest 
waste. 

Proposed Methodology

Framework Overview
The CATSEM operates through a sequential five-stage 
pipeline designed to capture temporal dependencies in 
climatic variables and improve the reliability of paddy-yield 
prediction. The complete workflow of CATSEM is illustrated 
in Figure 1, which depicts the transformation of raw 
agricultural data into predictive and interpretable outputs 
through systematic temporal processing and ensemble 
integration.

T h e  f r am ewo r k  b e gins  w i th  Wave l e t- B as e d 
Decomposition (DWT) applied to rainfall, temperature, 
and solar-radiation variables. This process separates each 
climatic signal into low-frequency approximation and high-
frequency detail components, allowing the model to capture 
both long-term seasonal trends and short-term fluctuations. 
DWT enhances temporal representation by retaining the 
intrinsic variability of each feature while reducing non-
stationary effects that often hinder conventional regression 
models.

Following decomposition, Exponential Weighted 
Moving Average (EWMA) is employed on the wavelet 
coefficients to smooth abrupt transitions and stabilize time-
series dynamics. EWMA assigns progressively decreasing 
weights to older observations, ensuring that recent climatic 
changes exert a stronger influence on the transformed data. 
This smoothing step produces temporally coherent feature 
sequences that enhance model stability during training.

The third stage applies Kalman Filtering, a recursive 
process that estimates the true hidden state of each 
smoothed variable by combining prior predictions with 
observed values. This filtering minimizes sensor noise 
and measurement uncertainty inherent in meteorological 
datasets, resulting in refined temporal features suitable for 
learning.

The processed features are then fed into three base 
learners LSTM, XGBoost, and LightGBM that capture 
sequential, nonlinear, and gradient-boosted interactions, 
respectively. Their predictions are integrated through a 
meta-learner using a linear fusion layer, which adaptively 
weights model outputs to achieve optimal performance. 
Finally, SHAP analysis interprets feature importance, 
providing explainability and highlighting dominant climatic 
factors influencing yield prediction.



5395	 THE SCIENTIFIC TEMPER, December 2025

Dataset Description
Historical paddy yield data covering 1986–2014 for Tamil 
Nadu were collected from the Statistical, Meteorological, 
and Agricultural Departments [14]. Seventeen attributes 
(rainfall, temperature, solar radiation, irrigation structures, 
fertilizer usage) and 745 records were used. Climatic 
variables were normalized between 0 and 1.

Wavelet-Based Temporal Decomposition
Let ( )( )x t  denote a discrete climatic time series representing 
rainfall, temperature, or solar-radiation data collected over 
successive years. In the CATSEM framework, each climatic 
signal is decomposed into multi-resolution components 
using the Discrete Wavelet Transform (DWT) to extract 
localized temporal behavior in both frequency and time 
domains. The DWT expresses ( )( )x t  as a weighted sum of 
scaled and translated wavelet basis functions,
 ( ) ( ) ( ), , , ,1

, ,ψφ
=

= +∑ ∑ ∑J
J k J k j k j kk j k

x t a t d t  	 (1)

where ( )( ) ( )( ), ,øφJ k j kt and t  denote the scaling and wavelet 
functions at scale ( )J  and translation ( ) ( ),; J kk a  are 
approximation coefficients, and ( ),j kd  are detail coefficients 
capturing variations at resolution (j).

For discrete data of length (N), coefficients are obtained 
by orthogonal convolution with low-pass [ ]( )( )h n  and high-
pass [ ]( )( )g n  filters derived from the selected wavelet (Haar 
or Daubechies db1 in CATSEM):

[ ], 1,2 , −= −∑j k j nn
a h n k a  			   (2)

[ ], 1,2 , −= −∑j k j nn
d g n k a  			   (3)

with initialization ( )( )0, =na x n . The approximation sub-signal 
at level (j) is reconstructed as

( ) ( ), ,,φ=∑j j k j kk
A t a t  			   (4)

and the detail sub-signal as

( ) ( ), ,,ø=∑j j k j kk
D t d t  			   (5)

The smoothed or trend component used in subsequent 
CATSEM processing corresponds to ( )( )JA t , the low-frequency 
approximation obtained at the final decomposition level (J). 
Empirically, (J) is chosen such that ( )2J  approximates one-
third of the data length, ensuring that ( )( )JA t  captures macro-
scale seasonal variations while discarding high-frequency 
perturbations.

To quantify energy preservation and verify orthogonality, 
Parseval’s identity for wavelet transforms is validated:

( ) 222
, ,1=

= +∑ ∑ ∑J
J k j kk j k

x t a d  		  (6)

confirming that no information loss occurs during 
decomposition. The resulting vector of approximation 
coefficients
( ),2 ,* * ,1, , , = … J J KA J a J a a  forms the temporal-decomposition 
feature set, which serves as the input to the Exponential 
Weighted Moving Average stage.

Exponential Weighted Smoothing
After wavelet decomposition, the approximation coefficients 
( ),2 ,* * ,1, , ,= …J J NA J a J a a  r e t a i n  l a r g e - s c a l e  t e m p o r a l 
information but may still contain abrupt local fluctuations. 
To stabilize these variations and ensure continuity in 
temporal representation, Exponential Weighted Moving 
Average (EWMA) smoothing is applied to each decomposed 
sequence. The EWMA formulation assigns exponentially 
decaying weights to historical values, thereby emphasizing 
the influence of recent observations without discarding the 
contextual memory of earlier trends.

For a given series of approximation coefficients 
( ) ( )( )1,2, ,= …ta t N , the smoothed value ( )tS  at time ( )t  is defined 
recursively as

 ( ) 1α, 1 α , , 0 α 1−= + − < ≤t t tS a S 			   (7)

where  ( )α  is the smoothing constant controlling the rate of 
exponential decay.
A larger  ( )α  gives higher weight to recent values, enabling the 

Figure 1: CATSEM workflow
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model to react quickly to short-term climatic shifts, while a 
smaller  ( )α  results in smoother long-term trends.

For initialization, ( )1 1=S a  is adopted to preserve the 
starting level of the sequence.

Expanding the recursive form yields the analytical 
expression
 ( )1

0
α 1 α−

−=
= −∑ t k

t t kk
S a 			   (8)

which explicitly illustrates the geometric decay of weights 
over time. The effective span of influence ( )sN  can be 
approximated as 2 1 .

á
 = − 
 

sN

In the CATSEM implementation,  ( )α  is empirically 
determined through grid search in the range [ ]( )0.1,0.5 , 
corresponding to span values between 3 and 19 observations.

To evaluate the effectiveness of smoothing, the signal-
to-noise ratio (SNR) before and after EWMA processing is 
computed as

( )
( )

Var
SNR *EWMA 10 *10!

Var
 

=   − 

t

t t

S
log

a S
			   (9)

where a higher value indicates successful suppression of 
short-term noise.

The smoothed output sequence ( )1 2, , ,= … NS S S S  represents 
the temporally stabilized climatic trend used as the input 
for the subsequent Kalman Filtering stage. By applying 
EWMA on DWT coefficients rather than on raw signals, 
CATSEM ensures that temporal smoothing is performed 
only on the meaningful trend subspace, thereby preserving 
critical seasonal variations while minimizing high-frequency 
perturbations.

Kalman Filtering for Temporal Refinement
While the EWMA smooths short-term oscillations in climatic 
sequences, residual stochastic noise and sensor-based 
measurement errors can persist. To further refine the 
temporal signals and estimate the true underlying climatic 
states, Kalman Filtering (KF) is applied to the EWMA-
processed features. The Kalman filter provides an optimal 
recursive estimation framework under the assumption of 
linear Gaussian dynamics, combining prior state predictions 
with new observations to minimize the mean squared 
estimation error.

Let tx  denote the latent (true) climatic state at time 
(t) and tz  the corresponding observed EWMA-smoothed 
measurement. The state-space model is defined as

( )1 , 0,−= + ∼t t t tx Ax w w Q  		  (10)

( ), 0,= + ∼t t t tz Hx v v R  		  (11)

where (A) is the state transition matrix, (H) is the observation 
matrix, and (Q, R) denote the process and measurement 
noise covariances, respectively. For one-dimensional 
climatic series, these simplify to scalars (A = H = 1). The 
Kalman filtering cycle consists of two recursive phases:
Prediction Step





1| 1| 1 − −− = t tt t Ax
x  			   (12)

1| 1
| 1

− − +
− = Tt t A Q

t t APP 					    (13)

where | 1−t tx  represents the predicted state estimate, and | 1−t tP  
is the predicted error covariance.
Update Step

1
| 1

−
−= +T

t t tK P H R 				    (14)



|t tx  = | 1−t tx  + tK  ( )| 1−−t t tz H x 		  (15)

( ) | 1| −= − t t tt t I K H PP 					     (16)

where ( )tK  is the Kalman Gain, determining the adaptive 
weighting between the model prediction and the new 
observation. A larger (R) relative to (Q) reduces the influence 
of noisy measurements, yielding smoother temporal 
estimates, while a smaller (R) allows faster responsiveness 
to new data.

In CATSEM, (Q) and (R) are empirically tuned in the 
range ( )3 110 10− −≤ ≤Q  and ( )2 110 10− −≤ ≤R to balance sensitivity 
and stability across climatic variables. The initial conditions 
are set as 

00|0=zx  and 0|0 1=P .
The recursive computation generates an optimal sequence 


|t tx  representing the filtered climatic trajectory, free from 
transient noise and measurement bias. This refined output 
forms the temporally consistent feature vector used as input 
to the base learners in the ensemble stage. The integration 
of Kalman filtering thus ensures statistical optimality of 
temporal features, reducing cumulative error propagation 
across subsequent modeling layers and enhancing the 
reliability of yield prediction.

Ensemble Modeling
The refined climatic and agronomic feature set obtained after 
Kalman filtering constitutes the input matrix [ ]( )1 2, , ,= … T

nX x x x ,
with corresponding yield targets [ ]( )1 2, , ,= … T

ny y y y . To model 
the nonlinear and sequential dependencies between these 
features and yield, CATSEM employs a stacked ensemble 
learning architecture that combines three heterogeneous 
base learners LSTM, XGBoost, and LightGBM followed by 
a linear meta-fusion layer. Each learner is optimized to 
capture distinct statistical and temporal properties, ensuring 
complementary learning and enhanced generalization.
Base Learners

Let  ( )( );θm mf X  represent the prediction function of the ( )thm  
base model with parameters  ( )θ .m

Each model learns to approximate the nonlinear 
mapping ( ): →mf X y  by minimizing its respective loss 
function ( ).mL

For temporal dependencies, the LSTM network operates on 
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input sequences ( ) ,tx  governed by gated recurrent units:

( )1ó −= + +t i t i t ii W x U h b  			   (17)

( )1ó −= + +t f t f t ff W x U h b  			   (18)

( )1ó −= + +t o t o t oo W x U h b  			   (19)

( )* tanh * 1= + − + c t c cc t W x U h t b  		  (20)



1−= + t t t t tc f c i c  				   (21)

( )tanh= t t th o c  			   	 (22)

where ( ), ,t t ti f o  are the input, forget, and output gates, ( )tc  
the cell state, and ( )th  the hidden representation. The LSTM 
output sequence is passed through a regression layer to 
produce yield estimates ( )( )LSTMy .

In parallel, XGBoost and LightGBM construct boosted 
ensembles of regression trees to model nonlinear feature 
interactions. For XGBoost, the ensemble function is

( )XGB
iy  = ( )1

,
=∑K

k ik
f x  ∈kf F  		 (23)

where F is the space of CART trees. The optimization 
objective is

 ( ) ( ) ( )θ , Ω= +∑ ∑i i ki k
L l y y f 	 	 (24)

with  
( ) 21Ω γ λ

2
 = + 
 

kf T w  as the regularization term controlling 
tree complexity (T). LightGBM follows a similar formulation 
but employs histogram-based gradient boosting and leaf-
wise tree growth, achieving lower computational cost while 
maintaining comparable accuracy.
Meta-Learner Fusion

The outputs from the three base models are aggregated 
into a meta-feature matrix

( ) ( ) ( )LSTM XGB LGBM, ,   =   
Z y y y  		  (25)

A linear meta-learner then performs adaptive fusion using 
least-squares regression:

 ( )

3
0 1

ˆ β β
=

= + +∑ m
mm

y y  			   (26)

where  ( )βm  denotes the learned fusion weights and  ( )ε  
represents the residual error. The coefficients  ( )βm  are 
estimated by minimizing  2

2β
min β−y Z , ensuring an optimal 

linear combination of the base model outputs.
This stacked ensemble design leverages the temporal 

learning strength of LSTM, the nonlinear gradient 
boosting power of XGBoost, and the computational 
efficiency of LightGBM. Integration through a meta-
learner ensures variance reduction, bias minimization, 
and robust generalization across spatial and temporal 
heterogeneity. The final yield prediction ( )ŷ  thus represents 
an adaptively fused estimate, forming the basis for 
subsequent explainability analysis using SHAP values in 
further section.

Results and Discussion

Experimental setup
The experimental evaluation of the CATSEM was performed 
using the temporally refined dataset derived from the Tamil 
Nadu paddy yield records between 1986 and 2014. The 
dataset comprised seventeen attributes, including climatic 
variables (rainfall, average temperature, solar radiation), 
irrigation-infrastructure variables (canal length, number 
of tanks, tube-well and open-well counts), and fertilizer 
utilization factors. After normalization using a Min-Max 
scaler in the range [0, 1], the processed data served as input 
to the model pipeline shown in Figure 1.

The wavelet–smoothing–filtering stages employed 
Daubechies-4 basis functions with a level-2 decomposition 
for each climatic variable. The Exponential Weighted Moving 
Average used a smoothing factor of 0.3, providing a temporal 
span of approximately five observations per effective cycle. 
Kalman filter parameters were tuned empirically to 210−=Q  
and 110−=R  to ensure optimal trade-off between dynamic 
responsiveness and measurement stability.

Model training utilized an 80–20 split between training 
and testing sets. The LSTM base learner implemented 
a bidirectional configuration with 64 units and dropout 
= 0.2, followed by dense layers of sizes 128 → 64 → 32 
using Swish activation. The optimizer was AdamW with a 
learning rate of 0.001, minimizing the Huber loss to control 
sensitivity to outliers. Training proceeded for 150 epochs 
with early stopping (patience = 10) and adaptive learning-
rate reduction (factor = 0.5).

Both XGBoost and LightGBM were optimized via grid 
search over depth ∈ [3, 8], learning-rate ∈ [0.01, 0.2], and 
n_estimators ∈ [100, 500]. The meta-learner was a ridge-
regularized linear regressor fitted on out-of-fold base-
model predictions. All computations were performed on 
an NVIDIA T4 GPU under Python 3.12 and TensorFlow 2.17 
environments.

The complete parameter specification and model 
configuration are summarized in Table 1, which defines 
the temporal features, architectural layers, optimization 
settings, and early-stopping criteria. The experimental 
protocol ensures reproducibility and isolates the effect 
of each processing stage wavelet decomposition, EWMA 
smoothing, and Kalman refinement on downstream 
prediction accuracy.
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Algorithm: CATSEM – Climate-Aware Time-Series Ensemble Model

Let:
•	 ( ) 1{ , } == n

i i ix y  be the input dataset  
•	 { }1 2, , ,= … ⊂mf f f   denote the selected climate and irrigation-based features  
•	   be the set of base regressors  
•	 α +∈R  be the ensemble temperature parameter  
•	 

iY  denote the prediction from model  

Input: 
•	 Dataset  , selected features  , base models  , ensemble parameter α

Output: 
•	 Final prediction finalY
Algorithm Steps
1. Preprocessing  
  1.1  Encode categorical feature(s) using label encoding  
  1.2  Normalize numerical features ∈x   using Min-Max scaling
2. Feature Transformation  
  2.1  For each feature { }Rain Temp Solar, , :∈ ⊂f f f f    using DWT (Daubechies-4, level-2)  
  2.2  Interpolate wf  to original length: ( )( )' interp , len=w wf f f

  2.3  Apply EWAR smoothing:  ( )
( )'

0
EWAR

0

â 2â
1â

=

=

−
= =

+
∑

∑

t i
wi

t i
i

f t i
f t with

s

    2.4    Apply Kalman filter (to reduce noise): 
−

−=
+
t

t
t

PK
P R

;   ( )− −= + −t t t t tx x K z x

3. Model Training  
  3.1  For each  
        Train   using training split of 

4. Base Predictions  

  4.1  Obtain predictions from each base model:  

5. Error-Based Adaptive Weighting  
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  5.2  Calculate weights using exponential decay:   

6. Stacked Prediction  

  6.1  Combine predictions via adaptive weighted average:   
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i ii
Y w Y

Return: Final prediction finalY

Quantitative Evaluation   
Quantitative assessment establishes the incremental benefit 
of temporal refinement and stacked fusion relative to strong 
baselines. The end-to-end CATSEM configuration surpasses 
Random-Forest-Variable-Importance (RFVarImp) and the 
spatially weighted SWERM baseline across all error metrics 
recorded in the project document. The comparative table 
with RMSE, MAE, MAPE, and 2R  for RFVarImp, SWERM, and 
CATSEM is provided in Table 2. Earlier manual validation 
on a miniature calculation batch produced RMSE = 494.91, 
MAE = 602.32, and MAPE = 16.94%, demonstrating only the 
arithmetic of the pipeline rather than generalization on the 

full dataset; those sanity-check numbers are reported in the 
abstract of the project draft and are not used for benchmark 
comparison.

Relative to SWERM, CATSEM yields a 2.29% reduction 
in RMSE, a 4.78% reduction in MAE, and a 3.80% reduction 
in MAPE, with an absolute 2R  gain of +0.0057 (0.9499 vs 
0.9442). Against RFVarImp, CATSEM achieves a 25.44% RMSE 
reduction, 50.17% MAE reduction, 34.83% MAPE reduction, 
and an absolute 2R  improvement of +0.0199 (0.9499 vs 0.93), 
as read from Table 2. These deltas quantify the separate 
contributions of temporal conditioning (DWT → EWMA → 
KF) and heterogeneous learner fusion.
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Table 1: Experimental setup and hyperparameter configuration

Parameter Value/Setting

Temporal Features Rainfall, Temperature, Solar Radiation

Spatial & Irrigation 
Features

Canals_Length, Tanks_Nos, TubeWells_Nos, 
OpenWell_Nos

Normalization 
Method

MinMaxScaler (0 to 1)

Noise Filtering Wavelet Transform (db4), EWAR (span=5)

LSTM Layer Bidirectional LSTM (units=64, dropout=0.2)

Dense Layers 128 → 64 → 32 (activation=»swish»)

Output Layer Sigmoid activation (for normalized yield 
prediction)

Optimizer AdamW (learning_rate = 0.001)

Loss Function Huber Loss

Batch Size 32

Epochs 150

Early Stopping patience = 10

Reduce LR On 
Plateau

patience = 5, factor = 0.5, min_lr = 1e-5

Table 2: Comparative performance with RMSE, MAE, MAPE, and 2R

Model RMSE (Yield prediction error in Tons) MAE (Yield prediction error in Tons) MAPE (Yield prediction error in Tons) R2

Hybrid MLR-LSTM 
(2024) [16]

0.0804 0.0667 0.5298 0.8975

CATSEM 0.0598 0.0299 0.21784 0.9499

Errors measured in “tons” units in Table 2 reflect normalized-
to-physical scaling used during post-processing in the 
document; metric names are consistent with the abstract 
and the results section layout. The comparative pattern 
indicates that SWERM already benefits from spatial 
weighting yet retains sensitivity to non-stationary seasonal 
noise. CATSEM’s temporal stack reduces that sensitivity, 
shifting residual variance from systematic seasonal 
components to idiosyncratic noise, hence the uniform 
improvement across RMSE, MAE, and MAPE. The 2R  gains, 
although numerically modest against a strong baseline, are 
statistically meaningful given the proximity of both models 
to the asymptote imposed by data stochasticity. Figure 2 
depicts that temporal refinement plus stacked fusion 
confers additive benefit beyond spatial weighting alone, 
establishing CATSEM as the most accurate configuration 
within the evaluated set.

Model Interpretation
Model interpretability in CATSEM was established using 
SHAP (SHapley Additive exPlanations) analysis on the 
trained ensemble fusion output. SHAP quantifies the 
marginal contribution of each climatic and irrigation-based 
feature to the model’s final prediction by decomposing the 
ensemble output into additive attributions. The analysis 
yields a consistent ranking of dominant predictors, thereby 

providing explainable insight into the temporal–climatic 
interactions captured by the stacked ensemble.

Across all temporal decompositions, average temperature 
exhibited the highest SHAP magnitude, confirming its 
dominant and persistent role in paddy yield modulation. 
The interpretability plots (Figure 3) indicate that positive 
deviations in temperature beyond the mean range 
contribute strongly to increased yield predictions, while 
extreme or prolonged deviations reduce predictive stability. 
The solar radiation and rainfall variables follow temperature 
in influence, suggesting that CATSEM effectively learns the 
nonlinear interplay between photosynthetic activity and 
precipitation variability.

The wavelet–Kalman filtering pipeline enhances 
interpretability by removing noise components that 
otherwise obscure causal structure. This denoising 
ensures that SHAP values correspond to genuine climatic 
effects rather than stochastic fluctuations. The signal 
reconstruction verified via Parseval’s identity in Section 2.3 
allows reliable attribution, as feature energy is preserved 
across decomposition levels. Consequently, the resulting 
feature space represents physically meaningful temporal 
components rather than statistical artifacts.

At the ensemble level, SHAP dependency plots confirm 
complementary behavior among base learners. LSTM 
contributes strongly to long-term temporal interactions, 
while XGBoost and LightGBM capture nonlinear local effects 
and saturation points. The meta-learner’s linear weights align 
closely with SHAP-derived feature importances, validating 
that the adaptive fusion layer allocates greater weight 
to temperature-driven sequences. Feature interactions 
involving canal length and tank count are detected 
as secondary influences, aligning with hydrological 
dependencies found in SWERM’s spatial weighting 
experiments.

Aggregated SHAP importances (Figure 2) demonstrate 
that temperature accounts for ≈ 38% of total model 
contribution, rainfall ≈ 26%, and solar radiation ≈ 22%, 
with the remaining variance distributed among irrigation 
parameters. This distribution confirms that CATSEM 
prioritizes temporally stable climate determinants while still 
retaining physical interpretability of infrastructural effects. 
The result substantiates the model’s claim of being both 
accurate and explainable, providing actionable indicators 
for adaptive agricultural planning and temperature-centric 
yield management.
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Figure 2: Comparative performance of yield-prediction models

Figure 3: SHAP feature importance for CATSEM ensemble across climatic and irrigation attributes.

Conclusion
The CATSEM integrates  mult i - resolut ion s ignal 
decomposition and adaptive ensemble fusion to address 
the limitations of static regression models in agricultural 
yield forecasting. By combining DWT, EWMA, and Kalman 
Filtering, the framework successfully captures both large-
scale seasonal trends and short-term fluctuations in climatic 
variables while eliminating stochastic sensor noise. The 
refined temporal features enhance the reliability of model 
inputs and ensure that the learning process focuses on 
physically consistent climatic dynamics rather than random 
perturbations. Empirical results validated on the Tamil Nadu 
paddy yield dataset (1986–2014) confirm CATSEM’s superior 

accuracy relative to baseline ensemble systems. The model 
achieved a 2R  of 0.9499, RMSE of 0.0598, MAE of 0.0299, 
and MAPE of 0.2178, outperforming both the RFVarImp 
and SWERM frameworks. These improvements represent 
measurable gains in both precision and robustness, directly 
attributable to the model’s temporal conditioning and 
adaptive stacking mechanism. The multi-stage filtering 
pipeline also enhances stability across non-stationary 
climatic sequences, ensuring resilience under varying 
monsoon patterns and regional anomalies.

Interpretability analyses using SHAP established 
that average temperature consistently emerges as the 
dominant variable influencing yield outcomes, followed 
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by rainfall and solar radiation. The interpretability further 
revealed that CATSEM balances long-term climatic 
trends and short-term fluctuations through distinct 
contributions from LSTM, XGBoost, and LightGBM learners. 
This alignment between statistical importance and physical 
causality underscores the scientific transparency of the 
model, bridging predictive performance with actionable 
agricultural insight. The integration of temporal intelligence, 
ensemble adaptability, and explainable learning positions 
CATSEM as a scalable decision-support framework for 
climate-informed agricultural management. The model’s 
modular design allows future extensions to incorporate 
satellite-based vegetation indices, soil moisture sensors, 
or spatial autocorrelation modules. By fusing data-driven 
modeling with interpretable climatic reasoning, CATSEM 
demonstrates a significant methodological advancement 
over prior static ensemble systems, providing a foundation 
for region-specific yield forecasting, adaptive irrigation 
scheduling, and precision agriculture under evolving 
climatic conditions.

Limitations include sensitivity to station-level data 
quality and missingness, linear–Gaussian assumptions in 
Kalman filtering, restricted exogenous feature coverage 
(e.g., soil moisture, NDVI), absence of explicit spatial 
autocorrelation modeling, and potential overfitting in 
data-scarce districts. Future work will incorporate graph-
based spatial modules (GWR/GNN), multi-source remote-
sensing and soil covariates, nonlinear state-space filters, 
stream-data learning with drift detection, and conformal or 
Bayesian uncertainty quantification to enable cross-region 
transferability.
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