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CATSEM: A Climate-Aware Time-Series Ensemble Model
for Enhanced Paddy Yield Prediction

R. Mercy"’, T. Lucia Agnes Beena?

Abstract

Accurate paddy yield prediction remains a vital challenge in agricultural data analytics due to complex climate-soil interactions and
regional variability. The proposed Climate-Aware Time-Series Ensemble Model (CATSEM) integrates discrete wavelet decomposition,
exponential weighted smoothing, Kalman filtering, and adaptive ensemble learning to capture temporal dependencies in climatic
variables. The model preprocesses rainfall, average temperature, and solar radiation through Discrete Wavelet Transform (DWT) for
trend extraction, followed by Exponential Weighted Moving Average (EWMA) smoothing and Kalman filtering for signal refinement.
Three base learners Long Short-Term Memory (LSTM), XGBoost, and LightGBM are trained on temporally enhanced features, and their
outputs are fused using a linear meta-learner. Experimental evaluation demonstrates improved robustness and accuracy with CATSEM.
The proposed model offers interpretable temporal insights, emphasizing the dominant role of temperature in yield forecasting. CATSEM
serves as a scalable approach for adaptive agricultural planning under climatic variability.
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Introduction

Agricultural production prediction constitutes an essential
component of food-security planning, economic forecasting,
and environmental management. Rice or paddy cultivation,
occupying more than 160 million hectares worldwide,
remains highly vulnerable to climatic oscillations, soil
heterogeneity, and management variability (Hussain et al.,
2020). Accurate paddy-yield forecasting allows policymakers
to anticipate shortages, regulate procurement, and design
subsidy mechanisms. Agricultural data are inherently
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nonlinear and non-stationary (Huang et al., 2021), being
influenced by interacting climatic variables such as rainfall,
temperature, humidity, and solar radiation, together with
agronomic inputs such as fertilizer dosage, irrigation
infrastructure, and soil composition (Wang et al., 2025).
These complex interdependencies make conventional linear
models inadequate for robust yield estimation, particularly
under conditions of climate variability and environmental
uncertainty (Zhao F et al., 2025).

Traditional yield-forecasting techniques based on
statistical regression or autoregressive models assume fixed
relationships between predictors and yield (Zhao X et al.,
2025). Multiple Linear Regression (MLR) and Autoregressive
Integrated Moving Average (ARIMA) models provide ease
of interpretation but cannot effectively model nonlinear
climatic responses or dynamic seasonal dependencies
(Park et al., 2025; Ayiah et al., 2025). As agricultural datasets
expanded through satellite remote sensing, weather
stations, and precision-farming devices, the need for
adaptive learning algorithms became apparent (Wang & Li
2025). Machine Learning (ML) emerged as a natural successor
to statistical forecasting because of its ability to capture
nonlinear mappings and higher-order feature interactions
(Mohyuddin et al., 2024).

Among ML approaches, Decision Tree, Random Forest
(RF), Gradient Boosting (GB), and Support Vector Regression
(SVR) demonstrated competitive predictive power for yield
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estimation (Das et al., 2022; Sdnchez et al., 2025; Panigrahi
et al., 2023; Jabed et al., 2024). Random Forest has been
widely applied to crop yield mapping in heterogeneous
regions because of its robustness to missing and noisy
inputs (Das et al., 2022). XGBoost and LightGBM have
improved generalization and computational efficiency by
leveraging gradient-based boosting with regularization,
while deep learning architectures such as Convolutional
Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks have shown remarkable capabilities in
modeling temporal dependencies in climatic series (Mercy
etal., 2025).

Sathya & Gnanasekaran (2023) used Multi-Linear
Regression (MLR) with Long Short-Term Memory (LSTM)
neural network to model paddy yield in the Cauvery Delta
Zone. Their findings established that MLR-LSTM achieved
the highest predictive accuracy, confirming the superiority
of nonlinear neural approaches in handling climatic and
soil heterogeneity

Nikhil et al. (2024) proposed a statistical framework
emphasizing linear regression analysis combined with
rainfall and fertilizer indices for regional yield estimation.
The study emphasized simplicity and interpretability,
though its performance metrics indicated lower precision
compared with modern ML models. Collectively, both
works demonstrate the transition from traditional statistical
estimation to data-driven neural inference in yield modeling
for Tamil Nadu agriculture.

Ramesh and Kumaresan (2024) extended the crop
yield prediction on Indian state dataset using statistical
framework. Thangavel & Sakthipriya (2024) evaluated
multiple ML regressors across five South Indian states
using soil, meteorological, and crop parameters. The Extra
Trees Regressor achieved superior accuracy, outperforming
linear and neighbor-based models and reinforcing
the robustness of tree-based ensembles in non-linear
agricultural domains

A particularly influential contribution to this transition
is the work by Abdel-Salam et al. (2024), which introduced
a hybrid feature-selection and optimization framework for
crop-yield prediction. The framework combined K-means
clustering and Correlation-based Feature Selection
(CFS) with a composite Filter-Wrapper approach using
Feature Mutual Information Gain (FMIG) and Recursive
Feature Elimination (RFE). To optimize the SVR model, the
study incorporated an Improved Crayfish Optimization
Algorithm (ICOA) for adaptive hyperparameter tuning.
Finally, it emphasized the need for explainability in model
construction, aligning agricultural analytics with the
emerging field of eXplainable Al (XAl). This integration of
unsupervised clustering, statistical relevance analysis, and
metaheuristic optimization achieved superior accuracy
compared with conventional models such as Decision

Tree, Random Forest, and Gradient Boosting. Reported
performance reached an R? of approximately 0.57 and
MAE of 0.15 on benchmark paddy datasets, demonstrating
notable improvements in efficiency and interpretability.

Despite these strengths, limitations persist in SVR-
ICOA (Abdel-Salam et al. 2024). The hybrid SVR-ICOA
system remains essentially static, treating yearly records
as independent samples and overlooking temporal
interdependence among seasons. The absence of a dynamic
learning mechanism restricts its ability to capture delayed
climatic effects, for example, the impact of prolonged
drought on the following year’s yield. Furthermore, spatial
variability across districts is treated homogenously, even
though irrigation patterns and soil characteristics differ
considerably within the Tamil Nadu region. Finally, while
the model optimizes hyperparameters efficiently, it does not
incorporate sequential feedback or continuous adaptation
as new data become available.

Research Gap

Analysis of the broader literature exposes a recurrent
absence of explicit temporal modeling in ensemble-based
yield frameworks. Most models rely on aggregated annual
or seasonal averages, thereby losing fine-scale temporal
fluctuations that influence crop physiology. Studies rarely
apply signal-processing methods to separate trend and
noise components before feeding data into learning
algorithms. As a result, transient climatic shocks, sensor
errors, or missing observations often propagate as noise,
degrading prediction accuracy.

Another limitation concerns climate adaptability.
Standard ensemble learners treat all input features with
equal importance, disregarding inter-seasonal dominance
shifts for instance, temperature controlling yield during
flowering but rainfall being critical during germination.
Without adaptive weighting, predictions become biased
toward historically dominant features, reducing reliability
under atypical weather conditions. Moreover, many
hybrid models emphasize optimization but neglect
interpretability; thus, agricultural planners cannot discern
the relative influence of climate variables on yield outcomes.
Addressing these challenges requires a unified model that
merges temporal decomposition, adaptive smoothing, and
interpretable ensemble regression.

Problem Definition
Theresearch focuses on constructing a predictive framework
capable of integrating climatic variability, temporal
dependencies, and agronomic attributes for accurate and
explainable paddy-yield forecasting. The central problem
statement is formulated as follows:

To design a Climate-Aware Time-Series Ensemble
Model (CATSEM) that decomposes, smooths, and filters
climatic variables through Discrete Wavelet Transform
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(DWT), Exponential Weighted Moving Average (EWMA),
and Kalman Filtering, and subsequently fuses predictions
from heterogeneous learners within a stacked ensemble
to enhance robustness and interpretability in paddy-yield
prediction.

This formulation extends the base hybrid model by
embedding dynamic temporal learning and adaptive
climate sensitivity within the ensemble paradigm.

Objectives

The objectives guiding the CATSEM study are:

- To extract temporal trends from rainfall, temperature,
and solar-radiation data using Discrete Wavelet
Transform for multi-scale decomposition.

To apply Exponential Weighted Moving Average
smoothing to stabilize climatic sequences and suppress
random noise.

« Torefine decomposed signals through Kalman Filtering
for accurate state estimation under measurement
uncertainty.

« To develop an adaptive stacked ensemble integrating
LSTM, XGBoost, and LightGBM learners for
comprehensive temporal and nonlinear modeling.

« Toincorporate SHAP-based interpretability to evaluate
variable influence and provide transparent decision
support.

Significance of Study

CATSEM offers a unified modeling architecture that
bridges three historically distinct domains temporal signal
processing, ensemble learning, and XAl. The proposed
framework contributes to agricultural data science in
multiple ways. By integrating DWT, EWMA, and Kalman
Filtering, it isolates the long-term climatic signal from
short-term fluctuations, thereby reducing input uncertainty
before learning. The ensemble component exploits the
strengths of heterogeneous learners: LSTM captures
sequential dependencies; XGBoost models complex feature
interactions; and LightGBM ensures scalability for large
datasets. The fusion of their outputs through a meta-learner
minimizes residual error and yields robust predictions across
seasons.

From a theoretical standpoint, CATSEM operationalizes
the concept of climate awareness by dynamically adjusting
feature significance through temporal smoothing and
model-level weighting. This adaptive behavior allows the
system to generalize across drought, monsoon, and post-
monsoon conditions. From an applied perspective, the
framework enhances interpretability through SHAP analysis,
enabling agronomists to identify dominant climatic drivers
and validate them against empirical field knowledge. Such
interpretability not only improves trust in Al-based systems
but also aligns predictive analytics with policy frameworks
emphasizing transparency and accountability.

The significance of this research extends beyond algorithmic
innovation. Reliable paddy-yield forecasting facilitates
informed decision-making inirrigation scheduling, fertilizer
management, and market stabilization. Early warnings of
potential yield deficits can assist regional authorities in
mobilizing contingency measures, while overproduction
forecasts help prevent price collapses and post-harvest
waste.

Proposed Methodology

Framework Overview

The CATSEM operates through a sequential five-stage
pipeline designed to capture temporal dependencies in
climatic variables and improve the reliability of paddy-yield
prediction. The complete workflow of CATSEM is illustrated
in Figure 1, which depicts the transformation of raw
agricultural data into predictive and interpretable outputs
through systematic temporal processing and ensemble
integration.

The framework begins with Wavelet-Based
Decomposition (DWT) applied to rainfall, temperature,
and solar-radiation variables. This process separates each
climatic signal into low-frequency approximation and high-
frequency detail components, allowing the model to capture
both long-term seasonal trends and short-term fluctuations.
DWT enhances temporal representation by retaining the
intrinsic variability of each feature while reducing non-
stationary effects that often hinder conventional regression
models.

Following decomposition, Exponential Weighted
Moving Average (EWMA) is employed on the wavelet
coefficients to smooth abrupt transitions and stabilize time-
series dynamics. EIWMA assigns progressively decreasing
weights to older observations, ensuring that recent climatic
changes exert a stronger influence on the transformed data.
This smoothing step produces temporally coherent feature
sequences that enhance model stability during training.

The third stage applies Kalman Filtering, a recursive
process that estimates the true hidden state of each
smoothed variable by combining prior predictions with
observed values. This filtering minimizes sensor noise
and measurement uncertainty inherent in meteorological
datasets, resulting in refined temporal features suitable for
learning.

The processed features are then fed into three base
learners LSTM, XGBoost, and LightGBM that capture
sequential, nonlinear, and gradient-boosted interactions,
respectively. Their predictions are integrated through a
meta-learner using a linear fusion layer, which adaptively
weights model outputs to achieve optimal performance.
Finally, SHAP analysis interprets feature importance,
providing explainability and highlighting dominant climatic
factors influencing yield prediction.
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Figure 1: CATSEM workflow

Dataset Description

Historical paddy yield data covering 1986-2014 for Tamil
Nadu were collected from the Statistical, Meteorological,
and Agricultural Departments [14]. Seventeen attributes
(rainfall, temperature, solar radiation, irrigation structures,
fertilizer usage) and 745 records were used. Climatic
variables were normalized between 0 and 1.

Wavelet-Based Temporal Decomposition

Let (x(z)) denote a discrete climatic time series representing
rainfall, temperature, or solar-radiation data collected over
successive years. In the CATSEM framework, each climatic
signal is decomposed into multi-resolution components
using the Discrete Wavelet Transform (DWT) to extract
localized temporal behavior in both frequency and time
domains. The DWT expresses (x(r)) as a weighted sum of
scaled and translated wavelet basis functions,

x(0)= a0, (t)+Zj:Idej:k’\y/vk (1) (M

where (4,,(¢))and (e, (t)) denote the scaling and wavelet
functions at scale (J) and translation (k)i(a,;) are
approximation coefficients, and (4,,) are detail coefficients
capturing variations at resolution (j).

For discrete data of length (N), coefficients are obtained
by orthogonal convolution with low-pass (([#])) and high-
pass ((¢[#])) filters derived from the selected wavelet (Haar
or Daubechies db1 in CATSEM):

a, =Znh[n—2k],aj71,n Q)

dj,k = Z,,g [n - 2k]’aj—1,n (3)

with initialization (a,, = x()). The approximation sub-signal
at level (j) is reconstructed as

A (1) =288 (1) (4)
and the detail sub-signal as
D, (t): kdj,k?’ ik (t) (5)

The smoothed or trend component used in subsequent
CATSEM processing correspondsto (4, (¢)), the low-frequency
approximation obtained at the final decomposition level (J).
Empirically, (J) is chosen such that (2) approximates one-
third of the data length, ensuring that (4, (+)) captures macro-
scale seasonal variations while discarding high-frequency
perturbations.

To quantify energy preservation and verify orthogonality,
Parseval’s identity for wavelet transforms is validated:

|x(t)|2 = Zk|a1»k|2 +Zj:12k|dj,k|2 (©)

confirming that no information loss occurs during
decomposition. The resulting vector of approximation
coefficients

(4*J=[a*J.1a,,....a,.]) forms the temporal-decomposition
feature set, which serves as the input to the Exponential
Weighted Moving Average stage.

Exponential Weighted Smoothing
After wavelet decomposition, the approximation coefficients
(4*J=a*J,la,,,....a,\) retain large-scale temporal
information but may still contain abrupt local fluctuations.
To stabilize these variations and ensure continuity in
temporal representation, Exponential Weighted Moving
Average (EWMA) smoothing is applied to each decomposed
sequence. The EWMA formulation assigns exponentially
decaying weights to historical values, thereby emphasizing
the influence of recent observations without discarding the
contextual memory of earlier trends.

For a given series of approximation coefficients
(a)((r=1.2.....N)), the smoothed value (S,) at time (¢) is defined
recursively as

S, =a,a,+(1-a),S 0O<a<l @)

P )
where (e) is the smoothing constant controlling the rate of
exponential decay.

Alarger («) gives higher weight to recent values, enabling the
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model to react quickly to short-term climatic shifts, while a

smaller («) results in smoother long-term trends. X e (12)
For initialization, (S, =4,) is adopted to preserve the =A%y

starting level of the sequence. Ptlt_leP (13)

Expanding the recursive form yields the analytical
expression
S, = az:o(l ~a)'a,, 8)
which explicitly illustrates the geometric decay of weights
over time. The effective span of influence (»,) can be
approximated as [N‘ :2_1).

In the CATSEM implementation, (o) is empirically
determined through grid search in the range ([0.1,05]),
corresponding to span values between 3 and 19 observations.

To evaluate the effectiveness of smoothing, the signal-
to-noise ratio (SNR) before and after EWMA processing is
computed as

SNR *EWMA =10/og * 101[\/;/:(1;7%] ©9)
where a higher value indicates successful suppression of
short-term noise.

The smoothed output sequence (s=5s,,5,,....S, ) represents
the temporally stabilized climatic trend used as the input
for the subsequent Kalman Filtering stage. By applying
EWMA on DWT coefficients rather than on raw signals,
CATSEM ensures that temporal smoothing is performed
only on the meaningful trend subspace, thereby preserving
critical seasonal variations while minimizing high-frequency
perturbations.

Kalman Filtering for Temporal Refinement
While the EWMA smooths short-term oscillations in climatic
sequences, residual stochastic noise and sensor-based
measurement errors can persist. To further refine the
temporal signals and estimate the true underlying climatic
states, Kalman Filtering (KF) is applied to the EWMA-
processed features. The Kalman filter provides an optimal
recursive estimation framework under the assumption of
linear Gaussian dynamics, combining prior state predictions
with new observations to minimize the mean squared
estimation error.

Let x, denote the latent (true) climatic state at time
(t) and z, the corresponding observed EWMA-smoothed
measurement. The state-space model is defined as

x, =Ax_+w, w~N(0,0) (10)
v, ~N(0,R) ()

z, = Hx, +v,

where (A) is the state transition matrix, (H) is the observation
matrix, and (Q, R) denote the process and measurement
noise covariances, respectively. For one-dimensional
climatic series, these simplify to scalars (A = H = 1). The
Kalman filtering cycle consists of two recursive phases:
Prediction Step

1147 +0

where x__ represents the predicted state estimate, and 7, ,

=

is the predicted error covariance.

Update Step

K, =P, H"+R" (14)
X, =x,., + K, (z,—H{‘:l) (15)
B\t:(I—K,H)P,‘H (16)

where (X,) is the Kalman Gain, determining the adaptive
weighting between the model prediction and the new
observation. A larger (R) relative to (Q) reduces the influence
of noisy measurements, yielding smoother temporal
estimates, while a smaller (R) allows faster responsiveness
to new data.

In CATSEM, (Q) and (R) are empirically tuned in the

range (10°<0<10") and (10°<r<10") to balance sensitivity
and stability across climatic variables. The initial conditions
are set as xmf and B_,.
The recursive computation generates an optimal sequence
)/ct\‘, representing the filtered climatic trajectory, free from
transient noise and measurement bias. This refined output
forms the temporally consistent feature vector used as input
to the base learners in the ensemble stage. The integration
of Kalman filtering thus ensures statistical optimality of
temporal features, reducing cumulative error propagation
across subsequent modeling layers and enhancing the
reliability of yield prediction.

Ensemble Modeling

The refined climaticand agronomic feature set obtained after
Kalman filtering constitutes the input matrix (x =[x, x....x]’),
with corresponding yield targets (v=[n.».-x]'). To model
the nonlinear and sequential dependencies between these
features and yield, CATSEM employs a stacked ensemble
learning architecture that combines three heterogeneous
base learners LSTM, XGBoost, and LightGBM followed by
a linear meta-fusion layer. Each learner is optimized to
capture distinct statistical and temporal properties, ensuring
complementary learning and enhanced generalization.
Base Learners

Let (£, (X:0,,)) represent the prediction function of the (m")
base model with parameters (8,,).

Each model learns to approximate the nonlinear
mapping (/.:X—>») by minimizing its respective loss
function (Z,).

Fortemporal dependencies, the LSTM network operates on



5397 THE SCIENTIFIC TEMPER, December 2025

input sequences (x,), governed by gated recurrent units:

i, =6(Wx,+Uh,_ +b) (17)
f,=6(W,x,+U,h_ +b,) (18)
0, :(')(Woxt +U,h,_, +b0) (19)
¢*t=tanh(W.x, +Uh*t—1+b,) (20)
¢, =f0c +i0Oc 21)
h, =0, O tanh(c,) (22)

where (i, f,.0,) are the input, forget, and output gates, (c,)
the cell state, and (%) the hidden representation. The LSTM
output sequence is passed through a regression layer to
produce yield estimates (y(“”"

In parallel, XGBoost and LightGBM construct boosted
ensembles of regression trees to model nonlinear feature

interactions. For XGBoost, the ensemble function is

Yo = S (), freF 23)

where F is the space of CART trees. The optimization
objective is

L(0)=Y (v n)+ 2 0(4) (24)

with (Q(ﬁ):vﬁ%x\w\zj as the regularization term controlling
tree complexity (T). LightGBM follows a similar formulation
but employs histogram-based gradient boosting and leaf-
wise tree growth, achieving lower computational cost while
maintaining comparable accuracy.
Meta-Learner Fusion

The outputs from the three base models are aggregated
into a meta-feature matrix

Z:[y’(s\wyfe\)y(’e\mq (25)

A linear meta-learner then performs adaptive fusion using
least-squares regression:

. 3o (m)
=B+, By +e (26)

where (B,) denotes the learned fusion weights and (&)
represents the residual error. The coefficients (B,) are
estimated by minimizing mBin\y—ZBE, ensuring an optimal
linear combination of the base model outputs.

This stacked ensemble design leverages the temporal

learning strength of LSTM, the nonlinear gradient
boosting power of XGBoost, and the computational
efficiency of LightGBM. Integration through a meta-
learner ensures variance reduction, bias minimization,
and robust generalization across spatial and temporal
heterogeneity. The final yield prediction () thus represents
an adaptively fused estimate, forming the basis for
subsequent explainability analysis using SHAP values in
further section.

Results and Discussion

Experimental setup

The experimental evaluation of the CATSEM was performed
using the temporally refined dataset derived from the Tamil
Nadu paddy yield records between 1986 and 2014. The
dataset comprised seventeen attributes, including climatic
variables (rainfall, average temperature, solar radiation),
irrigation-infrastructure variables (canal length, number
of tanks, tube-well and open-well counts), and fertilizer
utilization factors. After normalization using a Min-Max
scalerintherange [0, 1], the processed data served as input
to the model pipeline shown in Figure 1.

The wavelet-smoothing-filtering stages employed
Daubechies-4 basis functions with a level-2 decomposition
for each climatic variable. The Exponential Weighted Moving
Average used a smoothing factor of 0.3, providing a temporal
span of approximately five observations per effective cycle.
Kalman filter parameters were tuned empirically to g =10~
and R=10" to ensure optimal trade-off between dynamic
responsiveness and measurement stability.

Model training utilized an 80-20 split between training
and testing sets. The LSTM base learner implemented
a bidirectional configuration with 64 units and dropout
= 0.2, followed by dense layers of sizes 128 — 64 — 32
using Swish activation. The optimizer was AdamW with a
learning rate of 0.001, minimizing the Huber loss to control
sensitivity to outliers. Training proceeded for 150 epochs
with early stopping (patience = 10) and adaptive learning-
rate reduction (factor = 0.5).

Both XGBoost and LightGBM were optimized via grid
search over depth € [3, 8], learning-rate € [0.01, 0.2], and
n_estimators € [100, 500]. The meta-learner was a ridge-
regularized linear regressor fitted on out-of-fold base-
model predictions. All computations were performed on
an NVIDIA T4 GPU under Python 3.12 and TensorFlow 2.17
environments.

The complete parameter specification and model
configuration are summarized in Table 1, which defines
the temporal features, architectural layers, optimization
settings, and early-stopping criteria. The experimental
protocol ensures reproducibility and isolates the effect
of each processing stage wavelet decomposition, EWMA
smoothing, and Kalman refinement on downstream
prediction accuracy.
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Let:

D={(x,y, )}, betheinput dataset

M = {M,M,, .., M} be the set of base regressors

a € R* be the ensemble temperature parameter
Y, denote the prediction from model M,

Input:

Output:
Final prediction Y,

.
inal

Algorithm Steps
1. Preprocessing
1.1 Encode categorical feature(s) using label encoding

2. Feature Transformation

s+l

24
2.4 Apply Kalman filter (to reduce noise): k, - PP';

3. Model Training
3.1 Foreach M; € M:
Train M; using training split of D,

4. Base Predictions
4.1
5. Error-Based Adaptive Weighting

V= Vi

e—aE,

5.1 Compute absolute error for each model: E, :%ZL.

5.2 Calculate weights using exponential decay: w, =

ZJI‘(:1 e

6. Stacked Prediction

6.1 Combine predictions via adaptive weighted average:

—_—

Return: Final prediction Y

inal

Algorithm: CATSEM - Climate-Aware Time-Series Ensemble Model

F={f, /o, f,,} = D denote the selected climate and irrigation-based features

Dataset D, selected features F, base models M, ensemble parameter «

1.2 Normalize numerical features x e F using Min-Max scaling

2.1 Foreachfeature sc{s,..fim filcF: f, < Wo(f) using DWT (Daubechies-4, level-2)
2.2 Interpolate y, to original length: , =interp(f,.len(/))
2.3 Apply EWAR smoothing: .- 220 s 2.

’ x,=x,’+K,(z,—x[)

Obtain predictions from each base model: ¥, = M, (Xtest),

—aEj

.
You = Z

fori=1tok

P ~
Wi'Y;

i=1

Quantitative Evaluation

Quantitative assessment establishes the incremental benefit
of temporal refinement and stacked fusion relative to strong
baselines. The end-to-end CATSEM configuration surpasses
Random-Forest-Variable-Importance (RFVarimp) and the
spatially weighted SWERM baseline across all error metrics
recorded in the project document. The comparative table
with RMSE, MAE, MAPE, and R? for RFVarlmp, SWERM, and
CATSEM is provided in Table 2. Earlier manual validation
on a miniature calculation batch produced RMSE = 494.91,
MAE =602.32, and MAPE = 16.94%, demonstrating only the
arithmetic of the pipeline rather than generalization on the

full dataset; those sanity-check numbers are reported in the
abstract of the project draft and are not used for benchmark
comparison.

Relative to SWERM, CATSEM yields a 2.29% reduction
in RMSE, a 4.78% reduction in MAE, and a 3.80% reduction
in MAPE, with an absolute R*> gain of +0.0057 (0.9499 vs
0.9442). Against RFVarlmp, CATSEM achieves a 25.44% RMSE
reduction, 50.17% MAE reduction, 34.83% MAPE reduction,
and an absolute R? improvement of +0.0199 (0.9499 vs 0.93),
as read from Table 2. These deltas quantify the separate
contributions of temporal conditioning (DWT — EWMA —
KF) and heterogeneous learner fusion.
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Table 1: Experimental setup and hyperparameter configuration

Parameter

Value/Setting

Temporal Features

Spatial & Irrigation
Features

Normalization

Rainfall, Temperature, Solar Radiation

Canals_Length, Tanks_Nos, TubeWells_Nos,
OpenWell_Nos

MinMaxScaler (0 to 1)

Method

Noise Filtering Wavelet Transform (db4), EWAR (span=5)

LSTM Layer Bidirectional LSTM (units=64, dropout=0.2)

Dense Layers 128 — 64 — 32 (activation=»swish»)

Output Layer Sigmoid activation (for normalized yield
prediction)

Optimizer AdamW (learning_rate = 0.001)

Loss Function Huber Loss

Batch Size 32

Epochs 150

Early Stopping patience =10

Reduce LR On patience = 5, factor = 0.5, min_Ir = 1e-5

Plateau

Errors measured in “tons” units in Table 2 reflect normalized-
to-physical scaling used during post-processing in the
document; metric names are consistent with the abstract
and the results section layout. The comparative pattern
indicates that SWERM already benefits from spatial
weighting yet retains sensitivity to non-stationary seasonal
noise. CATSEM’s temporal stack reduces that sensitivity,
shifting residual variance from systematic seasonal
components to idiosyncratic noise, hence the uniform
improvement across RMSE, MAE, and MAPE. The R’ gains,
although numerically modest against a strong baseline, are
statistically meaningful given the proximity of both models
to the asymptote imposed by data stochasticity. Figure 2
depicts that temporal refinement plus stacked fusion
confers additive benefit beyond spatial weighting alone,
establishing CATSEM as the most accurate configuration
within the evaluated set.

Model Interpretation

Model interpretability in CATSEM was established using
SHAP (SHapley Additive exPlanations) analysis on the
trained ensemble fusion output. SHAP quantifies the
marginal contribution of each climatic and irrigation-based
feature to the model's final prediction by decomposing the
ensemble output into additive attributions. The analysis
yields a consistent ranking of dominant predictors, thereby

providing explainable insight into the temporal-climatic
interactions captured by the stacked ensemble.

Across all temporal decompositions, average temperature
exhibited the highest SHAP magnitude, confirming its
dominant and persistent role in paddy yield modulation.
The interpretability plots (Figure 3) indicate that positive
deviations in temperature beyond the mean range
contribute strongly to increased yield predictions, while
extreme or prolonged deviations reduce predictive stability.
The solar radiation and rainfall variables follow temperature
in influence, suggesting that CATSEM effectively learns the
nonlinear interplay between photosynthetic activity and
precipitation variability.

The wavelet-Kalman filtering pipeline enhances
interpretability by removing noise components that
otherwise obscure causal structure. This denoising
ensures that SHAP values correspond to genuine climatic
effects rather than stochastic fluctuations. The signal
reconstruction verified via Parseval’s identity in Section 2.3
allows reliable attribution, as feature energy is preserved
across decomposition levels. Consequently, the resulting
feature space represents physically meaningful temporal
components rather than statistical artifacts.

At the ensemble level, SHAP dependency plots confirm
complementary behavior among base learners. LSTM
contributes strongly to long-term temporal interactions,
while XGBoost and LightGBM capture nonlinear local effects
and saturation points. The meta-learner’s linear weights align
closely with SHAP-derived feature importances, validating
that the adaptive fusion layer allocates greater weight
to temperature-driven sequences. Feature interactions
involving canal length and tank count are detected
as secondary influences, aligning with hydrological
dependencies found in SWERM'’s spatial weighting
experiments.

Aggregated SHAP importances (Figure 2) demonstrate
that temperature accounts for = 38% of total model
contribution, rainfall = 26%, and solar radiation = 22%,
with the remaining variance distributed among irrigation
parameters. This distribution confirms that CATSEM
prioritizes temporally stable climate determinants while still
retaining physical interpretability of infrastructural effects.
The result substantiates the model’s claim of being both
accurate and explainable, providing actionable indicators
for adaptive agricultural planning and temperature-centric
yield management.

Table 2: Comparative performance with RMSE, MAE, MAPE, and R*

Model RMSE (Yield prediction error in Tons) ~ MAE (Yield prediction error in Tons) ~ MAPE (Yield prediction error in Tons) ~ R2
Hybrid MLR-LSTM  0.0804 0.0667 0.5298 0.8975
(2024) [16]

CATSEM 0.0598 0.0299 0.21784 0.9499
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Figure 2: Comparative performance of yield-prediction models
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Figure 3: SHAP feature importance for CATSEM ensemble across climatic and irrigation attributes.

Conclusion

The CATSEM integrates multi-resolution signal
decomposition and adaptive ensemble fusion to address
the limitations of static regression models in agricultural
yield forecasting. By combining DWT, EWMA, and Kalman
Filtering, the framework successfully captures both large-
scale seasonal trends and short-term fluctuations in climatic
variables while eliminating stochastic sensor noise. The
refined temporal features enhance the reliability of model
inputs and ensure that the learning process focuses on
physically consistent climatic dynamics rather than random
perturbations. Empirical results validated on the Tamil Nadu
paddy yield dataset (1986-2014) confirm CATSEM's superior

accuracy relative to baseline ensemble systems. The model
achieved a R* of 0.9499, RMSE of 0.0598, MAE of 0.0299,
and MAPE of 0.2178, outperforming both the RFVarimp
and SWERM frameworks. These improvements represent
measurable gains in both precision and robustness, directly
attributable to the model’s temporal conditioning and
adaptive stacking mechanism. The multi-stage filtering
pipeline also enhances stability across non-stationary
climatic sequences, ensuring resilience under varying
monsoon patterns and regional anomalies.
Interpretability analyses using SHAP established
that average temperature consistently emerges as the
dominant variable influencing yield outcomes, followed
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by rainfall and solar radiation. The interpretability further
revealed that CATSEM balances long-term climatic
trends and short-term fluctuations through distinct
contributions from LSTM, XGBoost, and LightGBM learners.
This alignment between statistical importance and physical
causality underscores the scientific transparency of the
model, bridging predictive performance with actionable
agricultural insight. The integration of temporal intelligence,
ensemble adaptability, and explainable learning positions
CATSEM as a scalable decision-support framework for
climate-informed agricultural management. The model’s
modular design allows future extensions to incorporate
satellite-based vegetation indices, soil moisture sensors,
or spatial autocorrelation modules. By fusing data-driven
modeling with interpretable climatic reasoning, CATSEM
demonstrates a significant methodological advancement
over prior static ensemble systems, providing a foundation
for region-specific yield forecasting, adaptive irrigation
scheduling, and precision agriculture under evolving
climatic conditions.

Limitations include sensitivity to station-level data
quality and missingness, linear-Gaussian assumptions in
Kalman filtering, restricted exogenous feature coverage
(e.g., soil moisture, NDVI), absence of explicit spatial
autocorrelation modeling, and potential overfitting in
data-scarce districts. Future work will incorporate graph-
based spatial modules (GWR/GNN), multi-source remote-
sensing and soil covariates, nonlinear state-space filters,
stream-data learning with drift detection, and conformal or
Bayesian uncertainty quantification to enable cross-region
transferability.
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