Study and optimization of process parameters for deformation machining stretching mode
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.31Keywords:
Deformation machining, Surface roughness, Hardness, Grey Relation Analysis, Analysis of Variance (ANOVA)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Monolithic thin-structure parts with intricate geometric designs are employed in a variety of aeronautical, medical, marine, and automotive applications, which include the moldlines of the fuselage, turbine blades, impellers, avionic shelves, irregular fins, prostheses, bone and joint support, and skull plates. The deformation machining process is the solution to this challenging and difficult-to-manufacture high-quality components with intricate narrow geometries at competitive prices. The aim of the present study is to assess the effect of process parameters of the deformation machining process wherein a thin, floor-like structure is created by milling and is then formed using a single-point incremental forming tool. Investigation involves the design and development of tooling required for the process followed by feasibility checking of the process. To examine the impact of different process parameters on the process response, the experiments were carried out using the design of experiments. The findings of this study indicate that different process parameters, including spindle speed, tool diameter, incremental step depth, and feed rate, have a substantial impact on the process response, like thickness, surface finish, and hardness. Uneven and non-uniform surface patterns during SEM indicate that it is needed to examine the impact of process parameters. This research involves the feasibility study of a new hybrid technique of deformation machining. Conventionally, a metallic structure is produced by joining various components through welding or by fastening. These methods require additional expenditure on equipment, storage, floor space, human resources, etc., with higher lead time. Joining increases weight and reduces fatigue strength. The creation of monolithic structures can eliminate all these disadvantages.Abstract
How to Cite
Downloads
Similar Articles
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rashmi Rani, ROLE OF NEUROTICISM AND EXTRAVERSION FACTORS OF PERSONALITY ON LIFE SATISFACTION IN MARRIED COUPLES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Anand Mishra, Manish Kumar Dube, Harnam Singh Lodhi, Ambrina Sardar Khan, Studies on behavior and morphological changes in freshwater fish, Channa punctatus, under the exposure of untreated sewage water , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Kumari Sammy, Sumita Singh, Coefficient of absorption cross-section of RN black holes , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Damtew Girma, Addisalem Mebratu, Fresew Belete, Response of potato (Solanum tuberosum L.) varieties to blended NPSB fertilizer rates on tuber yield and quality parameters in Gummer district, Southern Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shriram N. Kargaonkar, Sushma Pradeep Chalke, Sunil Mahajan, Statistical Modeling of Consumer Preferences for Eco-friendly Digital Products: A Data-driven Approach Toward Sustainable Consumption in India , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

