Predictive modeling of dropout in MOOCs using machine learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.32Keywords:
Machine Learning, Predictive Modeling, Dropout Prediction, MOOCs, Learning AnalyticsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The advent of massive open online courses (MOOCs) has revolutionized education, offering unprecedented access to high-quality learning materials globally. However, high dropout rates pose significant challenges to realizing the full potential of MOOCs. This study explores machine learning techniques for predicting student dropout in MOOCs, utilizing the open university learning analytics dataset (OULAD). Seven algorithms, including decision tree, random forest, Gaussian naïve Bayes, AdaBoost classifier, extra tree classifier, XGBoost classifier, and multilayer perceptron (MLP), are employed to predict student outcomes and dropout probabilities. The XGBoost classifier emerges as the top performer, achieving 87% accuracy in pass/fail prediction and 86% accuracy in dropout prediction. Additionally, the study proposes personalized interventions based on individual dropout probabilities to enhance student retention. The findings underscore the potential of machine learning in addressing dropout challenges in MOOCs and offer insights for instructors and educational institutions to proactively support at-risk students.Abstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Josephine Theresa S, Graph Neural Network Ensemble with Particle Swarm Optimization for Privacy-Preserving Thermal Comfort Prediction , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

