Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.17Keywords:
Transient response, thick disc, fractional-order derivative, temperature distribution, thermal stress, integral transformDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The study investigates thermal interactions in a two-dimensional time fractional-order thermoelastic problem in a homogeneous, isotropic, and perfectly conducting thick annular disc subjected to a point impulsive sectional heat source. We utilize unconventional integral transformation techniques to study the thermoelastic response of a disc, in which an internal heat source is generated according to the linear function of the temperature and radiation-type boundary conditions. The time fractional-order thermoelastic theory is used to determine temperature, displacement, and stresses through a series of Bessel functions. Numerical calculations analyze fractional-order parameters on aluminum discs, incorporating time-based fractional derivatives into field equations for practical engineering scenarios, enhancing thermal properties analysis.Abstract
How to Cite
Downloads
Similar Articles
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Josephine Theresa S, Graph Neural Network Ensemble with Particle Swarm Optimization for Privacy-Preserving Thermal Comfort Prediction , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Anand Mishra, Manish Kumar Dube, Harnam Singh Lodhi, Ambrina Sardar Khan, Studies on behavior and morphological changes in freshwater fish, Channa punctatus, under the exposure of untreated sewage water , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anjani Kumar Shukla, Sadguru Prakash, Enzymes as Biomarkers of Pollution Stress in Channa punctatus (Bloch 1793) collected from Sawan nallaha, Balrampur, U.P. , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, TRANSGENIC APPROACH TOWARDS DEVELOPMENT OF COLD STRESS TOLERANT VEGETABLES FOR HIGH ALTITUDE AREAS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Vishakha Khambhati, Rajan Kumar Singh, Assessment of Respiratory Dynamics from ECG during Physical Exertion , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

