Adoption of artificial intelligence and the internet of things in dental biomedical waste management
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.21Keywords:
Artificial Intelligence, Biomedical Waste Management, Dental hospital, Internet thingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The production of waste is an ongoing activity that must be managed efficiently to protect both the environment and the health of the general population. Therefore, proper management of waste from dental care is essential in protecting the environment's health, and it should become an inherent part of dental services. This study’s primary objective was to use artificial intelligence in dental biomedical waste management. The goal of this project was to develop an automated technique for categorizing dental trash to enhance the process of managing biological waste. In the proposed research, the Support Vector Machine classifier has been regarded as the most effective method of classification for a dataset of Euclidean size. The most effective classifier used in the model is a support vector machine (with an accuracy of 96.5%, 95.9% specificity, and 95.3% sensitivity) when classifying the different types of garbage. The categorization is accomplished through machine learning techniques, to accurately separate waste into recycling categories, precisely four categories for dental biomedical waste. Based on the findings of these trials, This method has the potential to be used for garbage sorting and classification on different scales, which might aid in the scientific disposal of biological waste.Abstract
How to Cite
Downloads
Similar Articles
- M. S. Rajani Kanth, P. Guru Murthy, P. Srikanth, Nature’s Management - Life beyond death , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- T. Kanimozhi, V. Gowtham Raaj, C. R. Santhosh, Impulsively intended buying behavior: A new horizon of shopping behavior in the online era , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Sweta Jain, Jacob Joseph Kalapurackal, Green Innovation, Pressure, Green Training, and Green Manufacturing: Empirical evidence from the Indian apparel export industry , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kailash Naghera, Jay Talati, Riddhi Sanghvi, A Study on determinants of financial literacy and its impact on investment decisions , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Dinesh Chand Gupta, Tanushri Purohit, Assessment of Human Resource Practices and Employee Performance in Automobile Manufacturing Industry , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Kritika Gautam, Anitha Arvind, Neha Kapur, Mukesh Kumar, The keratometry changes pre and post-applanation tonometry , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

