A resilience framework for fault-tolerance in cloud-based microservice applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.23Keywords:
Bulkhead, little law, Fault tolerance, Auto Retry Circuit Breaker (ARCB), Resilience, framework, microservicesDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cloud-distributed systems offer significant opportunities for fault-tolerant applications. Microservices have gained significant acceptance as a cloud-based architecture for building fault-tolerant cloud applications. The primary aim of this study is to develop a dependable resilience framework, incorporating appropriate design patterns, that can be applied to any cloud applications. This framework combines a bulkhead utilizing a little law approach and an auto-retry circuit breaker, which can be seen as a fault tolerance pattern. This will eliminate the need for manual setting of design patterns, resulting in maximum throughput, availability of resources and the performance can be increased up to 55.3% from the average execution duration.Abstract
How to Cite
Downloads
Similar Articles
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Rianka Sarkar, P. Sreeramulu, Oceanic Epistemologies and Trans-corporeality: Reimagining Amitav Ghosh through Anthropocene Narratives , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Sangeeta ., Jitander S. Sikka, Meenal Malik, Static deformation of a two-phase medium consisting of a rigid boundary elastic layer and an isotropic elastic half-space induced by a very long tensile fault , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nilay Shukla, Ketan Desai, Study on the right to education with special references to public private partnerships , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajeshwar Mukherjee, Uday S. Dixit, Understanding cosmopsychism based on stochastic electrodynamics from the perspective of the Indian knowledge system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Josephine Theresa S, A Framework for Environment Thermal Comfort Prediction Model , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

