A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.63Keywords:
Diabetes mellitus, Clinical decision support system (CDSS), Ontology reasoning, Functional Electrical Stimulation (FES), Type-2 FuzzyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetes mellitus is a significant metabolic disorder that may last a lifetime and affects a great number of people throughout the world. Two major critiques that may be levelled at the ontology-based tools that are presently being used to analyse and treat diabetes are an increase in semantic incompatibility and an inability to interpret the information. Both of these complaints have the potential to be severe issues. Furthermore, clinical decision support systems, often known as CDSSs, play an important role in the diagnosis of diabetes. As a consequence, the outcomes of this study project advised that a new semantically intelligent Type-2 fuzzy CDSS for diabetes diagnosis be developed. The following steps are included in the proposed system: feature definition, semantic modelling, type-2 fuzzy modelling, and knowledge reasoning. This research endeavour is critical since there are currently so few works that address the formal integration of ontology semantics with Functional Electrical Stimulation (FES) reasoning, particularly in the medical arena. The system that was constructed takes into consideration the ontology-semantic similarity of the concepts that are relevant to diabetes complications and symptoms while doing a fuzzy rule analysis. The proposed approach is put to the test using a real-world dataset, and the results show that it has the potential to help both individuals and medical experts provide more accurate diabetes diagnoses. The suggested technique was tested on a real dataset, and the findings show that it has the potential to help physicians and patients diagnose diabetes mellitus more correctly.Abstract
How to Cite
Downloads
Similar Articles
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Tripathi, R. Deora, FAUNA – ASSISTED LITTER DECOMPOSITION AND ITS IMPACT ON CHEMICAL AND BIOLOGICAL HEALTH OF BALANITES AEGYPTIACA BASED SILVIPASTURE SYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- M. Vijaya, D. Hema, Some properties of maximal product of two picture fuzzy soft graph , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Princee Jain, Kalidasan Varathan, Effect of whole-body vibration on sensation, functional mobility and gait on diabetic neuropathy patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Bhavya S, Prabha Lis Thomas, Effectiveness of Video Assisted Training Program on low back pain and functional disability among housekeeping employees in selected educational institutions in Bengaluru , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Sivakumar, S. Vijaya, Eco-epidemiology of prey and competitive predator species in the SEI model , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

