An improved social media behavioral analysis using deep learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.38Keywords:
Deep Learning, Behaviour Analysis, ConvNet, Twitter, Positive tweets.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Most online users share their opinions and comments or give their valuable feedbacks on a variety of subjects. Public opinions and comments in social media have had great impact on social and political systems. This vast information can be reviewed and analyzed. As this online information grows in numbers it requires efficient processing. Thus, this information can be mined or analyzed effectively, making it a suitable candidate for data mining. Twitter’s micro blogging service has more than 250 million active users who post short messages about any topic. This vast information is a meaningful source of information regarding different aspects of. This paper proposes to mine and extract information from tweets called IBADL (Improved Behavioral Analysis using Deep Learning), the goal of the proposed technique is to mine information through the study of the tweets posted and conduct an analysis for drawing meaningful conclusions about the behavior of Twitter users.Abstract
How to Cite
Downloads
Similar Articles
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hardik Talsania, Kirit Modi, Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

