A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.33Keywords:
Transfer Learning, VGG19, DenseNet201, InceptionV3, MVCNN architecture, Ensemble modelsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The echocardiogram, also known as a cardiac ultrasound, captures real-time images of the heart’s chambers and valves. Ultrasonic waves are used in this method to penetrate the skin and generate the pattern of the heart’s movement, allowing healthcare professionals to assess its overall function. In this research study, we propose a novel approach for classifying heart diseases relying on echocardiogram videos using transfer learning and ensemble methods. The approach involves using pre-trained convolutional neural network models such as VGG19, Densenet201, and Inceptionv3 as feature extractors and then training a classifier on top of these extracted features. The pre-trained models have been trained on large datasets with millions of images, making them highly effective feature extractors for various computer vision tasks. The main objective is to leverage the learned representations from these models and apply them to echocardiogram videos for accurate classification of heart diseases. The novel integration of MVCNN (pre-trained convolutional neural network models VGG19, Densenet201, and Inceptionv3) with ensemble methods has led to a significant increase in accuracy, achieving an overall accuracy of 98.09% in classifying heart diseases using echocardiogram videos and achieved AUC-0.82% After implementing the novel integration.Abstract
How to Cite
Downloads
Similar Articles
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

