Vocational education and lifelong learning: Preparing a skilled workforce for the future
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.24Keywords:
Vocational education, Job requirements, Career advancement, Lifelong learning, Enhancing employability.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In an era characterized by rapid technological advancements and shifting economic landscapes, vocational education and lifelong learning have emerged as crucial components in preparing a skilled workforce for the future. This paper explores the evolving role of vocational education in equipping individuals with practical skills and competencies that align with the demands of modern industries. It also examines the significance of lifelong learning as a continuous process that enables individuals to adapt to changing job requirements and pursue career advancement. By analyzing the intersection of vocational education and lifelong learning, the paper highlights the importance of a flexible and dynamic education system that supports the development of a workforce capable of thriving in a rapidly evolving global economy. Furthermore, it discusses the challenges and opportunities associated with integrating these educational paradigms into existing systems, emphasizing the need for policies and initiatives that foster collaboration between educational institutions, industries, and governments. The findings underscore the pivotal role of vocational education and lifelong learning in fostering innovation, enhancing employability, and ensuring sustainable economic growth.Abstract
How to Cite
Downloads
Similar Articles
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Subna MP, Kamalraj N, Human Activity Recognition through Skeleton-Based Motion Analysis Using YOLOv8 and Graph Convolutional Networks , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Prashantha B. S., M. Dorairajan , Vijayaraj Kumar U.S., S. Srinivasaragavan, A Scientometric Study of Quality Assessment and Higher Education , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jasleen Kaur, Sultan Singh, Assessing the Impact of Stress on the Health and Job Performance of Employees in Indian Banks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Priya Rajwade, Alka Bansal, A study of the perceptions of teachers towards a holistic approach in teaching in CBSE board schools in the context of NEP 2020 at the foundational and preparatory stages , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

