Green inventory model for growing items with constraints under demand uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.1.10Keywords:
Sustainability, Spherical Triangular Fuzzy numbers, Economic Order Quantity, Discrete Ordering, Slaughter age, growing items, ConstraintsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An economic order quantity model for fast-growing animals is a mathematical or statistical framework used to analyze and forecast the financial aspects of maintaining and rearing animals that grow quickly while adhering to sustainable and environmentally friendly breeding practices. This model generally considers several variables and aspects involved in the production and management of these animals, such as the cost of acquisition, retention, and disposal, cost of feeding, as well as taxes on the emission of carbon dioxide and cost of shortage. Carbon dioxide production can be expressed through a functional polynomial equation, wherein the variables are impacted by both the age of the animals and the mortality function. This study proposes an economic growth quantity model for rapidly growing animals with discrete ordering, slaughter, and service level constraints where the shortage is permitted and is back ordered under uncertain demand. When an animal reaches the consumption age, it is prepared for processing and eventual slaughter to make meat products. The model aims to find the ideal age for slaughter and the most efficient quantity of newly hatched chicks procured from the supplier, aiming to minimize the overall expenses. We used spherical triangular fuzzy numbers to represent uncertain demand. Finally, we employ numerical examples to elucidate the envisaged model.Abstract
How to Cite
Downloads
Similar Articles
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Seema Yadav, Problems and Perspectives in Sustainable Environment in the World: A Legal Study , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Modenisha U, Ritha W, A mathematical model for sustainable landfill allocation and waste management , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Ashoke D. Maliki, Taiwo A. Muritala, Saji George, Frank A. Ogedengbe, Impact of project financiers’ strategies on de-risking infrastructural projects: A conceptual review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ranjan Kumar, Steroid Level in Breeding Stages of Freshwater Fish, Channa punctatus (Bloch) Under Laboratory Conditions , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ekhlaque Ahmad Khan, Sudha Yadav, The multifaceted potential of fennel: From antioxidant to biostimulants , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Mantsha Rayeen, Roshni Sengupta, Sanjay Chaudhary, Short-term changes in lens vault post implantable collamer lens surgery in myopic patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper

