FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.01Keywords:
Faster R-CNN, Deep learning, Network slicing, Deep belief network, Neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The 5G network is expected to accommodate numerous novel use cases originating from vertical businesses in mobile broadband communication service. Higher standards of execution, affordability, security, and board-level adaptability are only a few of the difficult needs brought on by these recently changed conditions. The current organizational strategy of using a one-size-fits-all blueprint is not practicable. An emerging strategy for sustainably meeting these diverse criteria is to split a single physical network into multiple logical networks, each tailored to a unique set of requirements. The authors of this work created a hybrid learning approach to network slicing. Improving weighted feature extraction (OWFE), data collection, and slicing classification are the three processes recommended for this work. A dataset of 5G network slices is used as an initial input. This dataset contains metrics such as bandwidth, duration, modulation type, delay rate, jitter, speed, user device type, packet loss ratio, and packet delay budget. The last step is to use the Faster R-CNN model, which includes the RPN model, to classify the values provided. From this model, one can generate precise network slices like URLLC, mMTC, and eMBB. A change in the configuration of accurate 5G organization slicing would be brought about by the suggested approach, according to the findings of the study.Abstract
How to Cite
Downloads
Similar Articles
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

