Econometric analysis of grain yields (using the example of the Republic of Azerbaijan)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.01Keywords:
Productivity, Crops, Econometric analysis, Agriculture, Statistical modeling.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article is an econometric analysis of the influence of factors affecting the yield of grain crops in the Republic of Azerbaijan. In the course of the work, the dependence of yield on climatic, economic and agrotechnical factors was assessed based on correlation and regression analysis. The results of statistical modeling were formed, which allows identifying the most important determinants, such as the number of meteorological workers, the level of mechanization of production at the enterprise, the average annual number of crops, the use of mineral fertilizers, and government funding. The data obtained can be used to develop detailed recommendations for increasing the efficiency of grain crop production, as well as developing forecast models to improve planning in agriculture.Abstract
How to Cite
Downloads
Similar Articles
- Alok Sharma, Roumi Deb, Sanjay Kumar Manjul , Cultural continuity and change through ceramic ethnoarchaeology: A comparative analysis of Rang Mahal and contemporary pottery in Nohar, Hanumangarh district, Rajasthan , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- SHILPENDRA KOUR, REKHA KHANDAL, RASHMI TRIPATHI, EVALUATION OF LEAF EXTRACTS OF DIFFERENT MEDICINAL PLANTS FOR POTENTIAL ANTIBACTERIAL ACTIVITY AND PRELIMINARY PHYTOCHEMICAL ANALYSIS , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raghvendra, Tulika Saxena, Saurabh Verma, Rashi Saxena, Smita Dron, Shilpi Singh, Combination of financial literacy, strategic marketing and effective human resource for sustainable household wealth development , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Modenisha U, Ritha. W, Fueling Sustainability: A Cost-Benefit Analysis of RDF and Sewage Sludge as Alternative Fuels in Cement Production , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Surender Singh, Rachna Thakur, Suchitra Devi, Globalization and Indian Negotiation on Agriculture , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Pankaj Gupta, Niyati Chaudhary, Model Building with Antecedents and Consequences of Workplace Bullying: A SPAR-4-SLR approach using ADO-TCCM Framework with Bibliometric Analysis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

