Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.10Keywords:
Satellite Images, Pre-Flood, Post-Flood, Remote Sensed Data, Feature Extraction, Image ClassificationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Satellite images are the best way to identify flood pretentious areas. Once we identify flood pretentious regions, then it is possible to identify the portion of vegetation area, residential area, water area, etc. But satellite images are very complex images from which data extraction is a very crucial task and it is also very difficult to identify pre-flood and post-flood images from large sets of data. So many techniques are used, but accuracy is still a major constraint. Thus, in this paper, the proposed nature-inspired algorithm is explained, which is inspired by the foraging technique of zebra animals and deep learning classification. Major focus on three phases of the proposed model: data processing, feature extraction and classification. Various comparison matrices are used to prove that the proposed algorithm is better than the existing algorithms.Abstract
How to Cite
Downloads
Similar Articles
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mineshi Mishra, Purnima Awasthi, Psychosocial factors affecting risk of post-partum depression among mothers and their Birth satisfaction: A systematic review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nandini S, Nagabushanam M, Nandeesh G S, Sundaresha M P, Pramodkumar S, Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shemal Dave, Dhaval Vyas, Jyotindra Jani, Capital adequacy and systemic risk: Evidence from selected Indian private sector banks , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper

