Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.6.12Keywords:
Internet of Things, Load Balancing, SDN-IoT, QoS, Software Defined Networking, Proximal Policy OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The growth of Internet of Things devices and their uses have introduced ample challenges in handling dynamic and heterogeneous traffic patterns. This also has affected the area of Software Defined Networking (SDN). The key parameters like scalability, latency and resilience are the concerns in centralized SDN approach, especially in the case of large-scale IoT deployments. This research introduces a new method, Distributed SDN Control for IoT networks: A Federated Meta Reinforcement Learning Solution for Load Balancing. This method combines Federated Learning (FL) with the key features of Meta Reinforcement Learning (Meta-RL) to enable intelligent and privacy preserving load balancing across distributed SDN controllers. The system functions in two phases. In the first phase, traffic distribution models across are trained with FL without sharing raw data. Security is added to this by differential privacy and Byzantineresilient aggregation. In the second phase, fast adaptation to non-stationary traffic patterns is achieved using Meta-Learning and Proximal Policy Optimization (PPO). The performance evaluations show that theAbstract
How to Cite
Downloads
Similar Articles
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Nupur Dogra, Shaveta Sharma, Impact of social networking sites on adolescent alienation and depression with special reference to Facebook usage , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Gitesh Kalita, NEP 2020 policies for inclusive education , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

