The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.10Keywords:
Artificial Intelligence, Consumer Decision-Making, Personalized Marketing, Cosmetic Industry, Digital Literacy, Consumer Trust, Consumer PreferencesDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial intelligence, or AI, creates entirely new dimensions in combining consumer experiences via personal marketing instruments. This objective of the study is to explore the causal relationship between AI-based personalization and consumer behavior within the cosmetics sector. Further, the investigation looks into how AI acceptance and effectiveness in influencing purchase behaviour are dependent on factors such as digital literacy, demographic attributes, and trust. This study used a quantitative method with structured questionnaires, targeting women in Pune who have interacted with AI-based beauty applications. Data were analyzed on SPSS software by applying descriptive statistics, Cronbach’s Alpha for reliability, regression analysis, and ANOVA testing. The findings indicated a significant influence of AI personalization on consumer purchasing intent and trust. Digital literacy and ease of use were crucial for consumer engagement. Ethical and data privacy concerns were some of the barriers to hasty AI acceptance. The tendency of the cosmetic company to encourage and provide customer satisfaction and loyalty in a digital marketplace would be with transparency about ethical artificial intelligence use and user-centric personalization strategies.Abstract
How to Cite
Downloads
Similar Articles
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Deepika, I. Antonitte Vinoline, The Impact of ERP Integration and Preservation Technology on Profit Optimization in Inventory Systems with Shortages and Deterioration , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Deepika M, Antonitte Vinoline I, An integrated inventory system for profit maximization considering partial demand satisfaction , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayshree Mehta, Pranjal Bhatt, Vikas Raval, Skill development in India: Challenges, current, and future perspectives , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Pankaj Gupta, Niyati Chaudhary, Model Building with Antecedents and Consequences of Workplace Bullying: A SPAR-4-SLR approach using ADO-TCCM Framework with Bibliometric Analysis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

