The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.10Keywords:
Artificial Intelligence, Consumer Decision-Making, Personalized Marketing, Cosmetic Industry, Digital Literacy, Consumer Trust, Consumer PreferencesDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial intelligence, or AI, creates entirely new dimensions in combining consumer experiences via personal marketing instruments. This objective of the study is to explore the causal relationship between AI-based personalization and consumer behavior within the cosmetics sector. Further, the investigation looks into how AI acceptance and effectiveness in influencing purchase behaviour are dependent on factors such as digital literacy, demographic attributes, and trust. This study used a quantitative method with structured questionnaires, targeting women in Pune who have interacted with AI-based beauty applications. Data were analyzed on SPSS software by applying descriptive statistics, Cronbach’s Alpha for reliability, regression analysis, and ANOVA testing. The findings indicated a significant influence of AI personalization on consumer purchasing intent and trust. Digital literacy and ease of use were crucial for consumer engagement. Ethical and data privacy concerns were some of the barriers to hasty AI acceptance. The tendency of the cosmetic company to encourage and provide customer satisfaction and loyalty in a digital marketplace would be with transparency about ethical artificial intelligence use and user-centric personalization strategies.Abstract
How to Cite
Downloads
Similar Articles
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- A. Jafar Ali, G. Ravi, D.I. George Amalarethinam, AI-Integrated Swarm-Powered Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks to Maximize Network Lifetime , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Bayelign A. Zelalem, Ayalew Ali, BRICS and South African economic growth: Implications for Ethiopia, the new BRICS member , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Deepak K. Sharma, Vandana ., Pankaj Kumar, Ambrish Pandey, Jitender Pal, Investigating physico-chemical characteristics of water and wastewater in the printing industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Vikas Jangra, Dr. Vikas Jangra, Vandana, Comparative study of color difference on coated and uncoated paper in digital printing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

