The Implementation of Artificial Intelligence-Based Models of Postoperative Care in Paediatric Healthcare Settings
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.21Keywords:
Artificial Intelligence, Pediatric Pain, Postoperative Care, Multimodal Fusion, Haryana Healthcare, Affective ComputingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Postoperative pain management in pediatric patients remains an important problem because young children cannot verbally express pain. Unrelieved pain can have adverse neurodevelopmental outcomes, but conventional intermittent monitoring is often insufficient in capturing transient pain crises, especially in resource-constrained settings. This study develops and tests an AI-based multimodal construct of continuous, automated pain surveillance but specifically within the healthcare ecosystem of Haryana, India. Employing a mixed-methods approach to research, we combined clinical data on 100 pediatric patients at four districts (Hisar, Sirsa, Rohtak and Panipat) with an AI simulation trained on multimodal data (facial expressions, cry acoustics, and physiological vitals). The classification accuracy obtained by the proposed AI model was 90.20% and Area under the Curve (AUC) was 0.93, showing a good correlation (r = 0.88, p < 0.001) with expert clinical evaluations by FLACC and Wong-Baker scales. An alert latency of less than 1 minute was shown by the system, thus significantly faster than manual rounds. Furthermore, a perception survey of 20 healthcare officials showed a high degree of acceptance of the clinical utility of the technology (mean score 4.4/5) although training gaps are a major hindrance (score 3.65/5). The findings suggest that response latency and missed high pain episodes can be considerably reduced by AI assisted monitoring by around 45%. This framework can provide an ideal, scientifically-backed answer to improving the quality of care of pediatric patients in Haryana, as long as ethical governance and structured training of personnel take priority.Abstract
How to Cite
Downloads
Similar Articles
- Sarika A. Nirmal, Nalanda D. Wani, The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Varsha Sharma, Krishna Kumar Gupta, Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Naveen Kumar, Sunder S. Arya, Mamta Sawariya, Ajay Kumar, Neha Yadav, Jyoti Sharma, Himanshu Mehra, Unraveling the effect of salicylic acid on Vigna radiata L. under PEG- induced drought stress , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Poornima Dave, Aditi Shrimali, MATRIMANAS digital app for maternal mental healthcare: A research proposal , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper

