Per Recruit Models for Stock Assessment and Management of Carp Fishes in the Pattipul Stream, Sheetalpur, Saran (Bihar)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.27Keywords:
Per recruit models, Major carp, Pattipul streamDimensions Badge
Issue
Section
The Per recruit models were applied to assess Major carp stock in the Pattipul of Bihar showed rapid increment in Yield per recruit (Y/R) at low values of fishing mortality (M=0.17/year) and age at first capture (Tc=0.5 years and increasing F (0.50/year) as 1068 g per year. The Y/R above this level was constant or slightly decreased and the recent F value is higher than the biological reference points as F0.1 (0.15 per year), FSB40% (0.13 per year), FSB50% (0.08 per year) and FSB25% (0.24 per year). The Tc increase by one year resulted in slight increase in Y/R, while additional Tc increase led to decrease in Y/R values. The Tc increase in F required to obtaining the maximum Y/R until reaching a optimum state as initial recruitment at constant M, while recent F value gives small increase in recent level of F, increasing the Tc by one year would result in a small increase in biomass per recruit (B/R). The Tc increase caused a gradual increase in B/R, followed by a decline after a certain value of Tc. These results provide evidence of recruitment over-fishing at all optimum fishing levels, and so sustainable management and conservation of Major carps in Pattipul would require a decrease in F to levels less than F0.1 and FSB40%, which can be achieved through a reduction in fishing effort but not through an increase in Tc.Abstract
How to Cite
Downloads
Similar Articles
- Animesh Priyadarshi, Dr. Bidyanand Choudhary, Economic Impact of Mahua (Madhuca longifolia, Ericales, Sapotaceae) and Tendu Leaves (Diospyros melanoxylon, Ericales, Ebenaceae) Collection on Rural Livelihood: A Comprehensive Case Study of Jharkhand , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Sampa Mondal, Nilanjana Chatterjee, Baibaswata Bhattacharjee, Positive impact of using α-Fe2O3 nanoparticles as dietary supplements on some hematological parameters of an economically important minor carp Labeo bata (Hamilton, 1822) , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Tulika ., FURADAN EFFECT UPON HISTOPATHOLOGY OF OVARY IN THE FRESHWATER FISH Channa punctatus (Bloch) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pinkey Kumari Prasad, Kalidasan Varathan, Effect of concise arm rehabilitation for stroke patients approach vs modified constraint-induced movement therapy on hand functions in post stroke hemiparetic subjects , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Deepesh Bhardwaj, Niyati Chaudhary, Blueprints of Green: Determining Key Determinants of Sustainable Real Estate Projects in Delhi NCR , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

