Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.33Keywords:
Electrochemical technique, biomarker, cancerDimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Electrochemical technique has attracted the substantial attention for the early detection of cancer biomarkers due to its imperative properties like simplicity, high sensitivity, specificity, low cost) and point of care detection. This article has reviewed the clinically relevant electrochemical immunosensors developed so far for the analysis of neuron specific enolase (NSE), a biomarker for Small cell lung cancer. Firstly, we have different Categorized the immunoassay techniques used to monitor NSE has been discussed.NSE immunosensors are particularly, divided into three main categories (a) Sandwich assay (b) Direct detection assay and (c) indirect detection assay. The Prevailing role of nano structured materials as electrode matrices and as electroactive has been discussed. Subsequently, the key performances of various immunoassays have been critically evaluated in terms of limit of detection, linear ranges and incubation time for clinical translation. Electrochemical techniques coupled with screen printed electrodes developed market level commercialization of NSE sensors have also been discussed. Finally, the review concludes the current challenges associated to available methods and provides a future outlook towards commercialization opportunities for easy detection of NSE.Abstract
How to Cite
Downloads
Similar Articles
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, A Unified Consistency-Calibrated Boundary-Aware Framework for Generalizable Skin Cancer Detection , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

