Assessment of transfer learning models for grading of diabetic retinopathy
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.17Keywords:
Transfer learning, retinal image, diabetic retinopathy, VGG16, Inception v3, ResNet50Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetic retinopathy is a potentially mortal diabetic complication. The severity level of DR must be identified earlier to reduce the medical complications. Effective automated ways for identifying DR and classifying its severity stage are necessary to reduce the burden on ophthalmologists. Transfer learning methods are utilized to automatically grade the severity of diabetic retinopathy in this study. The stages of DR are diagnosed using pretrained VGG16, Inception v3, and ResNet50 models on pre-processed retinal images of DDR dataset. Out of three implemented models, Inception v3 achieved higher validation accuracy of 76.47% and testing accuracy of 67% compared to VGG16 and ResNet50 models. This research contributes to the analysis of deep learning architectures for the creation of automated diabetic retinopathy stage diagnosis and gradingAbstract
How to Cite
Downloads
Similar Articles
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Royan Chhetri, Prem Kumar N, Polyphenolic compounds as novel reno-modulatory agents in the management of diabetic nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Mudassir Peeran A, A.R. Mohamed Shanavas, A Hybrid Post-Quantum Cryptography and Machine Learning and Framework for Intrusion Detection and Downgrade Attack Prevention throughout PQC Migration , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

