Multistate modeling for estimating clinical outcomes of COVID-19 patients
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.05Keywords:
Multistate model, TPM, Stacked Probability plot, Competing risks, ICU, COVID-19Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The severity of COVID-19 is often associated with severe pneumonia requiring intensive care unit (ICU) without Ventilation and ICU with ventilation. Clinical outcomes depend on the length of the ICU and the duration of the states. It is difficult to estimate how many people will experience each of these outcomes (discharge, death) due to the time dependence of the data and the potential for multiple events. Because of their time dependence, potential multiple events, and competing, terminal events of discharge, alive and death, estimating these quantities statistically is challenging. The main objective of this paper is to study the time-dependent progress of COVID-19 patients through the multistate approach with hazard rates and transition probabilities. The methodology allows for the analysis of active instances by accommodating censoring and the probability plots offer comprehensive information in a straightforward manner that can be easily shared with decision-makers in healthcare capacity planning.Abstract
How to Cite
Downloads
Similar Articles
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- R. Saarumathi, Logistics Optimization Through Composite Payday Installment in Favor of Requisite Ultimatum Vacillating Carrying Cost and Gradual Degeneration Under Non-stocked and Continuous Circumstances Using Hexagonal Fuzzy Number , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Madhu Bala Sharma, Pooja Yadav, A survey of attitude and behavior of Indian equity investors towards cryptocurrencies: Using smart-PLS and systematic equation modeling (SEM) approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

