Improvement of data analysis and protection using novel privacy-preserving methods for big data application
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.30Keywords:
Apache Spark, Big Data, ChiSqSelector, Intrusion detection, Support vector machine (SVM)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Due to the increasing volume of data, the importance of data analysis systems has become more critical. An intrusion detection system is a type of software that monitors and analyzes the data collected by a network or system. Due to the increasing volume of data collected in the medical field, it has become harder for traditional methods to detect unauthorized access and manipulation of the data. To advance the efficiency of big data analysis, various techniques are used in IDS. This paper proposes a method that combines the deep learning network and proposed optimization algorithm. The goal of this paper is to develop a classification model that takes into account the hidden layer nodes of the DBN and then implement a PSO algorithm to improve its structure. The results of the simulations show that the Spark-DBN-PSO algorithm achieves a 99.04% accuracy rate, which is higher than the accuracy of other deep neural network (DNN) and artificial neural network (ANN) algorithms. The results of the research demonstrate that the proposed methodology performs superior than the existing algorithm.Abstract
How to Cite
Downloads
Similar Articles
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Srinithiya, K. Menaka, Optimized Hybrid Feature Selection Techniques for Detecting Iron Deficiency Anemia , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

