Optimized Hybrid Feature Selection Techniques for Detecting Iron Deficiency Anemia
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.23Keywords:
Iron Deficiency Anemia(IDA), Feature Selection Techniques(FST), Filter, wrapper and Embedded methods, Hybrid feature selection techniques.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Iron Deficiency Anemia (IDA) is one of the most common types of nutritional disorders in the world and it requires precise and timely diagnosis to avoid the consequences of its development in the human body. This work aims is to improve and boost the classification performance of diagnosing IDA by utilizing different Feature Selection Techniques (FST) on the basis of filter, wrapper, embedded and hybrid approaches. A dataset containing the biological markers was compiled for analysis and several algorithms like Analysis of Variance (ANOVA) F-statistic, Recursive Feature Elimination (RFE), Least Absolute Shrinkage and Selection Operator (LASSO), Mean Squared Error (MSE), Random Forest and Support Vector Machine (SVM) from the above FST were used to determine the most discriminative features. Also, some hybrid algorithms from statistical and model-based selection, including ANOVA with Logistic Regression (Anolog) and Random Forest with Chi-square (ChiForest) were developed and evaluated. Based on their performance, the most valuable features were selected and thus the performance evaluation is enhanced. This comprehensive study highlights the effectiveness of hybrid feature selection methods to enhance the diagnostic accuracy, the model efficiency and clarity of interpretation. It is suggested by the findings that advanced machine learning and feature selection techniques should be integrated to come up with robust diagnostic tools that could be used to identify IDA. Keywords: Iron Deficiency Anemia(IDA), Feature Selection Techniques(FST), Filter, wrapper and Embedded methods, Hybrid feature selection techniques.Abstract
How to Cite
Downloads
Similar Articles
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Viji Parthasarathy, Manikandasaran S S, Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper

