Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.12Keywords:
Intuitionistic Fuzzy Theory; Markov Chains; Aggregation Operators; Weighted Geometric Operator; Artificial Neural NetworkDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this work, we have presented the decision-making models based on ANN, which takes argument pairs, of the intuitionistic fuzzy values and defuzzifies the decision matrices and create Stochastic matrices for producing input for computations of ANN. Concepts from Stochastic processes namely Markov chains and limiting distributions are discussed in detail in this research work and has been applied for effective decision making in complex situations. The numerical illustration provided in this work will be solved using the Markov chain models and some linear space techniques and applied in Artificial Neural Network (ANN). A new Algorithm is also developed for solving the MAGDM problems applying the proposed methods. The Numerical illustrations are solved with defuzzyfication operators and the results are recorded for effectiveness and comparisons are made with some existing methods. The new method proves to be more effective than the previous methods of ANN for MAGDM problemsAbstract
How to Cite
Downloads
Similar Articles
- Mudassir Peeran A, A.R. Mohamed Shanavas, A Hybrid Post-Quantum Cryptography and Machine Learning and Framework for Intrusion Detection and Downgrade Attack Prevention throughout PQC Migration , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Manibabu, M. Gomathy, Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

