Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.16Keywords:
Risk Assessment, Dairy Farming, Feed Behaviour Analysis, YOLOv5 Algorithm, Ketosis and Mastitis and Data Quality Management.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Dairy farming is crucial for global food security, providing essential products like milk and cheese. However, challenges such as animal health, economic instability, and environmental issues threaten the industry’s sustainability. This study utilizes big data analytics and machine learning, including YOLOv5 and Cascade Feedforward Neural Networks, to enhance feeding strategies, improve data quality management, and predict ketosis risks, ultimately improving cow health and preventing metabolic disorders. The study employs a combination of Apache Spark HDFS for handling large-scale data and YOLOv5 for real-time feed behaviour detection. Physiological data like rumination time, body temperature, and activity levels are collected, along with behavioural data from YOLOv5. These data types are integrated into a unified training pipeline, with the Cascade Feedforward Neural Network [CSFEM] for ketosis prediction. A Butterfly Optimization Algorithm [BOA]-guided stacking ensemble is applied to optimize model performance. The approach was implemented for efficient data processing and risk assessment. The proposed system achieved 99.8% accuracy, 99.2% precision, and 99.4% recall, effectively predicting ketosis and mastitis risks, showcasing the power of big data and machine learning in dairy farming. Future research could enhance model generalizability by incorporating diverse datasets, real-time monitoring, environmental sensors, and genetic data, and refining YOLOv5 for better real-world adaptability.Abstract
How to Cite
Downloads
Similar Articles
- Ayalew Ali, Sitotaw Wodajio, The effect of risk management on the bank’s financial stability in the emerging economy , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

