Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.16Keywords:
Risk Assessment, Dairy Farming, Feed Behaviour Analysis, YOLOv5 Algorithm, Ketosis and Mastitis and Data Quality Management.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Dairy farming is crucial for global food security, providing essential products like milk and cheese. However, challenges such as animal health, economic instability, and environmental issues threaten the industry’s sustainability. This study utilizes big data analytics and machine learning, including YOLOv5 and Cascade Feedforward Neural Networks, to enhance feeding strategies, improve data quality management, and predict ketosis risks, ultimately improving cow health and preventing metabolic disorders. The study employs a combination of Apache Spark HDFS for handling large-scale data and YOLOv5 for real-time feed behaviour detection. Physiological data like rumination time, body temperature, and activity levels are collected, along with behavioural data from YOLOv5. These data types are integrated into a unified training pipeline, with the Cascade Feedforward Neural Network [CSFEM] for ketosis prediction. A Butterfly Optimization Algorithm [BOA]-guided stacking ensemble is applied to optimize model performance. The approach was implemented for efficient data processing and risk assessment. The proposed system achieved 99.8% accuracy, 99.2% precision, and 99.4% recall, effectively predicting ketosis and mastitis risks, showcasing the power of big data and machine learning in dairy farming. Future research could enhance model generalizability by incorporating diverse datasets, real-time monitoring, environmental sensors, and genetic data, and refining YOLOv5 for better real-world adaptability.Abstract
How to Cite
Downloads
Similar Articles
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vikas Chaudhary, Parul Jhajharia, Mediation of competitive advantage between strategy management practices and organizational performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

