Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.16Keywords:
Risk Assessment, Dairy Farming, Feed Behaviour Analysis, YOLOv5 Algorithm, Ketosis and Mastitis and Data Quality Management.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Dairy farming is crucial for global food security, providing essential products like milk and cheese. However, challenges such as animal health, economic instability, and environmental issues threaten the industry’s sustainability. This study utilizes big data analytics and machine learning, including YOLOv5 and Cascade Feedforward Neural Networks, to enhance feeding strategies, improve data quality management, and predict ketosis risks, ultimately improving cow health and preventing metabolic disorders. The study employs a combination of Apache Spark HDFS for handling large-scale data and YOLOv5 for real-time feed behaviour detection. Physiological data like rumination time, body temperature, and activity levels are collected, along with behavioural data from YOLOv5. These data types are integrated into a unified training pipeline, with the Cascade Feedforward Neural Network [CSFEM] for ketosis prediction. A Butterfly Optimization Algorithm [BOA]-guided stacking ensemble is applied to optimize model performance. The approach was implemented for efficient data processing and risk assessment. The proposed system achieved 99.8% accuracy, 99.2% precision, and 99.4% recall, effectively predicting ketosis and mastitis risks, showcasing the power of big data and machine learning in dairy farming. Future research could enhance model generalizability by incorporating diverse datasets, real-time monitoring, environmental sensors, and genetic data, and refining YOLOv5 for better real-world adaptability.Abstract
How to Cite
Downloads
Similar Articles
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajo, Taye Teshoma, The link between corporate governance and earnings management of insurance companies in Ethiopia , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

