Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.23Keywords:
Electric Vehicles, Power Converter Optimization, Research Methodology, Simulation-based Design, Vehicle-to-Grid, Sustainable TransportationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research paper presents a novel methodology for enhancing power converters in electric vehicle (EV) propulsion systems, focusing on optimizing efficiency, reliability, and performance. It integrates theoretical analysis, simulations, and practical experimentation to address current challenges in power converter technology for EVs. The study begins with a literature review to identify gaps and emerging trends in power converter technologies. A theoretical model is then proposed, incorporating advanced semiconductor materials, innovative circuit topologies, and improved thermal management to boost efficiency and power density. Simulation tools, such as finite element analysis and system-level modeling, are used to validate the model and optimize design parameters. These simulations predict converter behavior under various conditions and loads, providing insights for performance improvements. A prototype power converter based on the optimized design is developed to validate the theoretical predictions. Experimental data is collected through rigorous testing, evaluating factors like efficiency, thermal performance, and response time. The experimental results are compared with simulation outcomes to verify the accuracy of the methodology. The study also explores bidirectional power flow for vehicle-to-grid (V2G) applications, assessing the impact on power converters and their role in energy exchange between EVs and the grid. This research offers a systematic approach to advancing power converters in EV propulsion systems, combining theoretical analysis, simulation-based optimization, and practical testing to contribute to the development of sustainable, high-performance electric transportation.Abstract
How to Cite
Downloads
Similar Articles
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, A Unified Consistency-Calibrated Boundary-Aware Framework for Generalizable Skin Cancer Detection , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sarika A. Nirmal, Nalanda D. Wani, The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Deepesh Bhardwaj, Niyati Chaudhary, Blueprints of Green: Determining Key Determinants of Sustainable Real Estate Projects in Delhi NCR , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

