Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.23Keywords:
Electric Vehicles, Power Converter Optimization, Research Methodology, Simulation-based Design, Vehicle-to-Grid, Sustainable TransportationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research paper presents a novel methodology for enhancing power converters in electric vehicle (EV) propulsion systems, focusing on optimizing efficiency, reliability, and performance. It integrates theoretical analysis, simulations, and practical experimentation to address current challenges in power converter technology for EVs. The study begins with a literature review to identify gaps and emerging trends in power converter technologies. A theoretical model is then proposed, incorporating advanced semiconductor materials, innovative circuit topologies, and improved thermal management to boost efficiency and power density. Simulation tools, such as finite element analysis and system-level modeling, are used to validate the model and optimize design parameters. These simulations predict converter behavior under various conditions and loads, providing insights for performance improvements. A prototype power converter based on the optimized design is developed to validate the theoretical predictions. Experimental data is collected through rigorous testing, evaluating factors like efficiency, thermal performance, and response time. The experimental results are compared with simulation outcomes to verify the accuracy of the methodology. The study also explores bidirectional power flow for vehicle-to-grid (V2G) applications, assessing the impact on power converters and their role in energy exchange between EVs and the grid. This research offers a systematic approach to advancing power converters in EV propulsion systems, combining theoretical analysis, simulation-based optimization, and practical testing to contribute to the development of sustainable, high-performance electric transportation.Abstract
How to Cite
Downloads
Similar Articles
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ayalew Ali, Baylign Abebe , The link between CEO’s financial literacy and technological innovation of cooperative unions , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- V. Manibabu, M. Gomathy, Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Simeon P, Vijayalakshmi D, Design and development of wall hanging and plant hangers using tie and dye , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

