Enhanced regression method for weather forecasting
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.18Keywords:
Weather forecasting, Light gradient boosting machine, Regression, Differential evolution.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Weather prediction is gaining popularity very rapidly in the current era of artificial intelligence and Technologies. It is essential to predict the temperature of the weather for some time. Traditionally, weather predictions are performed with the help of large complex models of physics, which utilize different atmospheric conditions over a long period of time. These conditions are often unstable because of perturbations of the weather system, causing the models to provide inaccurate forecasts. The models are generally run on hundreds of nodes in a large high-performance computing (HPC) environment, which consumes a large amount of energy. In this paper, LightGBM Regression parameters are tuned by using an optimization technique. Differential evolution (DE) is used to optimize the LightGBM regressor for estimating and forecasting the weather in the fore coming days.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gourav Kalra, Arun Kumar Gupta, Multi-response Optimization of Machining Parameters in Inconel 718 End Milling Process Through RSM-MOGA , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neha Saini, Pallavi Upadhyay, Naitik Bhardwaj, Indra Rautela, Ashmita Bhatt, Nishima Sharma, Jyoti Barthwal, Prity Kumari, Naveen Gaurav, Establishment of in vitro Shoot Induction and an Evaluation of Antioxidant and Phytochemical Properties of Mucuna pruriens , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- R. Mercy, T. Lucia Agnes Beena, CATSEM: A Climate-Aware Time-Series Ensemble Model for Enhanced Paddy Yield Prediction , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Balasaheb Waphare, Rahilanaz Shaikh, Nitin Rane, A pair of fractional power of generalized hankel-clifford type transformations and their characteristics , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Josephine Theresa S, A Framework for Environment Thermal Comfort Prediction Model , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

