CATSEM: A Climate-Aware Time-Series Ensemble Model for Enhanced Paddy Yield Prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.27Keywords:
Agriculture, Climate Forecasting, Ensemble learning, Kalman filter, Paddy yield, Wavelet transformDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurate paddy yield prediction remains a vital challenge in agricultural data analytics due to complex climate–soil interactions and regional variability. The proposed Climate-Aware Time-Series Ensemble Model (CATSEM) integrates discrete wavelet decomposition, exponential weighted smoothing, Kalman filtering, and adaptive ensemble learning to capture temporal dependencies in climatic variables. The model preprocesses rainfall, average temperature, and solar radiation through Discrete Wavelet Transform (DWT) for trend extraction, followed by Exponential Weighted Moving Average (EWMA) smoothing and Kalman filtering for signal refinement. Three base learners Long Short-Term Memory (LSTM), XGBoost, and LightGBM are trained on temporally enhanced features, and their outputs are fused using a linear meta-learner. Experimental evaluation demonstrates improved robustness and accuracy with CATSEM. The proposed model offers interpretable temporal insights, emphasizing the dominant role of temperature in yield forecasting. CATSEM serves as a scalable approach for adaptive agricultural planning under climatic variability.Abstract
How to Cite
Downloads
Similar Articles
- Isreal Zewide, Tamiru Boni, Wondwosen Wondimu, Kibinesh Adimasu, Yield and economics of bean (Phaseolus vulgaris L.) as affected by blended NPS fertilizer rates and inter row spacing at maenitgoldia, Southwest Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- ABHAYA K. SINGH, IMPLICATIONS OF CLIMATE CHANGE IN THE HIMALAYAN REGION AND ITS IMPACT ON INDIAN SECURITY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Viji Parthasarathy, Manikandasaran S S, Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

