Statistical Modeling of Consumer Preferences for Eco-friendly Digital Products: A Data-driven Approach Toward Sustainable Consumption in India
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.14Keywords:
Sustainable consumption, consumer analytics, digital behavior, eco-friendly products, statistical modeling, circular economy, ESG marketingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As environmental concerns intensify globally, consumer behavior is undergoing a paradigm shift, particularly within rapidly digitizing economies like India. In this context, understanding and statistically modeling consumer preferences for eco-friendly digital products is both timely and essential. This study offers a data-driven approach to decoding sustainable consumption patterns, focusing on key behavioral and demographic indicators influencing green purchase intent. Drawing from structured survey responses of over 350 urban Indian consumers, the research employs a suite of advanced statistical tools-including multiple regression, principal component analysis (PCA), logistic regression, and chi-square tests-to examine correlations between sustainability-driven choices and variables like age-of-consumers, education-of-consumers, income, digital literacy with prior exposure to environmental campaigns. The analysis reveals that awareness of sustainability issues is significantly associated with behavioral outcomes like trust in eco-brands, willingness to pay a premium, and digital engagement with green content. PCA effectively distilled 14 observed behavioral metrics into three principal components, accounting for 78% of the variance in sustainable decision-making. These components reflect digital influence, socio-demographic consciousness, and psychological affinity toward sustainability. The study contributes a novel statistical modeling framework that bridges consumer psychology with sustainability science. Its interdisciplinary approach supports SDG-9 (industry-and-innovation), SDG-12 (responsible-consumption), and SDG-13 (climate-action), while offering practical insights for marketers, digital strategists, and policymakers. By harnessing empirical evidence, the research informs ESG-aligned and circular economy marketing strategies that resonate with India’s digitally active and environmentally conscious consumer baseAbstract
How to Cite
Downloads
Similar Articles
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Arunima Dey, Kankana Ghosh, Debangana Chakrabarti, Mahul Brahma, Re-envisioning the mainstream: A study on the acceptance of LGBTQIA+ Protagonists on a Bengali OTT platform , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A.P. Asha Sapna, C. Anbalagan, Towards a better living environment-compressive strength and water absorption testing of mini compressed stabilized earth blocks and fired bricks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Manibabu, M. Gomathy, Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

