Label-Aware Imputation with Cluster Refinement for Smartphone Usage Analytics in Educational Institutions
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.02Keywords:
Smartphone usage, Academic performance, Missing imputation, Machine learning, Clustering.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate handling of missing values remains a crucial step in data preprocessing, particularly in behavioral analytics where data incompleteness can distort pattern recognition and predictive modeling. This study presents a novel Label-Aware Imputation with Cluster Refinement (LAICR) framework designed specifically for smartphone usage datasets collected from educational institutions. The method partitions the dataset by usage-level labels (Low, Moderate, High), applies class-specific imputation using iterative reconstruction for numerical data and mode-based filling for categorical data, and refines results through K-Means clustering to improve local consistency.Experiments conducted on school and college datasets demonstrate significant improvements over standard global imputation techniques. The proposed method achieved an RMSE of 0.4575 and R² of 0.7735 for the school dataset, and RMSE of 0.4876 and R² of 0.7636 for the college dataset, outperforming global iterative and statistical baselines. Additionally, classification performance on imputed datasets reached 99.3% accuracy with XGBoost, indicating strong preservation of feature discriminability.The novelty of this work lies in combining label-awareness with intra-class cluster refinement, effectively reducing reconstruction error and preserving behavioral structure. This approach enhances the reliability of smartphone usage analytics, enabling more robust predictive modeling and behavioral interpretation in educational contexts.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Rajarajeswari M, Reena Ravi, Effectiveness of multicomponent intervention on smartphone addiction and leisure wellbeing among adolescents of selected PU college in Bangalore , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper

