Prognostic Factors and Survival Outcomes in Esophageal Cancer Patients from North-East India: A Hospital-Based Cohort Study Using Log-Rank Test and Binary Logistic Regression Analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.15Keywords:
Esophageal cancer, Survival analysis, Prognostic factors, Parametric model, Binary logistic regression, Log-Rank test, Chemotherapy, Radiotherapy.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Background: Esophageal cancer remains one of the most prevalent malignancies in North-East India, accounting for significant morbidity and mortality. The region demonstrates age-adjusted incidence rates substantially higher than other parts of India, with squamous cell carcinoma being the predominant histological type. Understanding prognostic factors and survival outcomes is essential for optimizing therapeutic interventions and patient counseling.Abstract
Objective: This study aimed to identify prognostic factors influencing survival outcomes in esophageal cancer patients from North-East India using log-rank test and binary logistic regression analysis.
Methods: A hospital-based retrospective cohort study of 502 esophageal cancer patients was conducted at the State Cancer Institute, Gauhati Medical College, Assam, India, for the period 2019–2021. Survival data were analyzed using the Kaplan-Meier method with log-rank tests to compare survival curves between demographic and clinical variables. Binary logistic regression with logit link function was employed to identify independent predictive factors for mortality.
Results: The study cohort consisted of 502 patients (80.68% aged ≥50 years, 67.3% males) with 271 deaths (54%) recorded during follow-up. Median overall survival was 14 months (95% CI: 11.99–16.01). Log-rank test revealed statistically significant associations with survival for esophagostomy surgery (p<0.001) and chemotherapy (p<0.001). Binary logistic regression identified chemotherapy (p=0.003, OR=1.891) and radiotherapy (p=0.049, OR=0.626) as independent prognostic factors, with chemotherapy conferring increased odds of mortality, whereas radiotherapy demonstrated protective effects.
Conclusions: This study demonstrates that chemotherapy and radiotherapy status constitute independent prognostic factors for esophageal cancer survival in North-East India. The protective effect of radiotherapy and the association with chemotherapy warrant further investigation to optimize multimodal treatment strategies. Socioeconomic status and basic demographic factors did not significantly influence survival outcomes after adjustment for treatment variables.
How to Cite
Downloads
Similar Articles
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pankaj Gupta, Niyati Chaudhary, Model Building with Antecedents and Consequences of Workplace Bullying: A SPAR-4-SLR approach using ADO-TCCM Framework with Bibliometric Analysis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Dividend policy and banks’ performance: Assessing the relevance versus irrelevance theory , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Dhabha Nehal Hitendrabhai, Sudhakar S, Effect of multidirectional plyometric training along with core strengthening among tennis players on dynamic balance, vertical jump performance and agility , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

