Prognostic Factors and Survival Outcomes in Esophageal Cancer Patients from North-East India: A Hospital-Based Cohort Study Using Log-Rank Test and Binary Logistic Regression Analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.15Keywords:
Esophageal cancer, Survival analysis, Prognostic factors, Parametric model, Binary logistic regression, Log-Rank test, Chemotherapy, Radiotherapy.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Background: Esophageal cancer remains one of the most prevalent malignancies in North-East India, accounting for significant morbidity and mortality. The region demonstrates age-adjusted incidence rates substantially higher than other parts of India, with squamous cell carcinoma being the predominant histological type. Understanding prognostic factors and survival outcomes is essential for optimizing therapeutic interventions and patient counseling.Abstract
Objective: This study aimed to identify prognostic factors influencing survival outcomes in esophageal cancer patients from North-East India using log-rank test and binary logistic regression analysis.
Methods: A hospital-based retrospective cohort study of 502 esophageal cancer patients was conducted at the State Cancer Institute, Gauhati Medical College, Assam, India, for the period 2019–2021. Survival data were analyzed using the Kaplan-Meier method with log-rank tests to compare survival curves between demographic and clinical variables. Binary logistic regression with logit link function was employed to identify independent predictive factors for mortality.
Results: The study cohort consisted of 502 patients (80.68% aged ≥50 years, 67.3% males) with 271 deaths (54%) recorded during follow-up. Median overall survival was 14 months (95% CI: 11.99–16.01). Log-rank test revealed statistically significant associations with survival for esophagostomy surgery (p<0.001) and chemotherapy (p<0.001). Binary logistic regression identified chemotherapy (p=0.003, OR=1.891) and radiotherapy (p=0.049, OR=0.626) as independent prognostic factors, with chemotherapy conferring increased odds of mortality, whereas radiotherapy demonstrated protective effects.
Conclusions: This study demonstrates that chemotherapy and radiotherapy status constitute independent prognostic factors for esophageal cancer survival in North-East India. The protective effect of radiotherapy and the association with chemotherapy warrant further investigation to optimize multimodal treatment strategies. Socioeconomic status and basic demographic factors did not significantly influence survival outcomes after adjustment for treatment variables.
How to Cite
Downloads
Similar Articles
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Heikham G. Chanu, Sudha A. Raddi, Anita Dalal, Sangeeta N. Kharde, Shivani Tendulkar, Association between the socio-demographic variables of women admitted for delivery to a Tertiary Care Hospital and their maternal and neonatal outcome - A cross-sectional study , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nalini S, Ritha W, Inventory model considering trade discounts and scrap disposal with sustainability , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Sreenath M.V. Reddy, D. Annapurna, Anand Narasimhamurthy, Influence node analysis based on neighborhood influence vote rank method in social network , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

