FDBSCAN-MBKSched: A Hybrid Edge-Cloud Clustering and Energy-Aware Federated Learning Framework with Adaptive Update Scheduling for Healthcare IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.18Keywords:
Internet of Medical Things (IoMT), Edge–Cloud Collaboration, DBSCAN Clustering, Mini-Batch K-Means, Federated Learning, Adaptive Scheduling, Energy-Efficient Healthcare AnalyticsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The explosive growth of the Internet of Medical Things (IoMT) has created huge, diverse, and noisy health data streams that require processing in real time under stringent energy and latency budgets. Conventional fuzzy clustering and synchronous federated learning methodologies tend to be plagued by noise sensitivity, excessive communication overhead, and poor model convergence efficiency. To address above mentioned issues, this work introduces FDBSCAN–MBKSched, a federated learning and clustering hybrid framework combining DBSCAN-based real-time abnormal health state detection and data filtering at the edge, Mini-Batch K-Means using MapReduce in the cloud, and an adaptive update scheduling mechanism. DBSCAN removes noisy data and identifies abnormal health states in real time at the edge, while non-emergency summaries are sent to the cloud for scalable clustering. The Federated Learning (FL) module governs distributed model training without sharing raw data, with devices dynamically adapting update frequencies as a function of model freshness, battery level, and event urgency. Experimental validation on real- IoMT datasets shows that FDBSCAN–MBKSched attains 12% improved anomaly detection accuracy, 21% reduced energy usage, and 17% lower emergency latency compared to traditional fuzzy clustering–based baselines. These findings demonstrate the efficiency of the framework for latency-sensitive, privacy-preserving, and resource-constrained healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Priscilla I, Jayasimman Lawrence, Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

