FDBSCAN-MBKSched: A Hybrid Edge-Cloud Clustering and Energy-Aware Federated Learning Framework with Adaptive Update Scheduling for Healthcare IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.18Keywords:
Internet of Medical Things (IoMT), Edge–Cloud Collaboration, DBSCAN Clustering, Mini-Batch K-Means, Federated Learning, Adaptive Scheduling, Energy-Efficient Healthcare AnalyticsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The explosive growth of the Internet of Medical Things (IoMT) has created huge, diverse, and noisy health data streams that require processing in real time under stringent energy and latency budgets. Conventional fuzzy clustering and synchronous federated learning methodologies tend to be plagued by noise sensitivity, excessive communication overhead, and poor model convergence efficiency. To address above mentioned issues, this work introduces FDBSCAN–MBKSched, a federated learning and clustering hybrid framework combining DBSCAN-based real-time abnormal health state detection and data filtering at the edge, Mini-Batch K-Means using MapReduce in the cloud, and an adaptive update scheduling mechanism. DBSCAN removes noisy data and identifies abnormal health states in real time at the edge, while non-emergency summaries are sent to the cloud for scalable clustering. The Federated Learning (FL) module governs distributed model training without sharing raw data, with devices dynamically adapting update frequencies as a function of model freshness, battery level, and event urgency. Experimental validation on real- IoMT datasets shows that FDBSCAN–MBKSched attains 12% improved anomaly detection accuracy, 21% reduced energy usage, and 17% lower emergency latency compared to traditional fuzzy clustering–based baselines. These findings demonstrate the efficiency of the framework for latency-sensitive, privacy-preserving, and resource-constrained healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Poornima Dave, Aditi Shrimali, MATRIMANAS digital app for maternal mental healthcare: A research proposal , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Vimala S, G. Arockia Sahaya Sheela, Label-Aware Imputation with Cluster Refinement for Smartphone Usage Analytics in Educational Institutions , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

