Preserving heritage through Fusion: An empirical study of Chikankari and Madhubani art
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.27Keywords:
Chikankari, Madhubani paintings, Fusion, Likeability, Acceptability.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Chikankari is a shadow work of Lucknow, the capital of India’s biggest state (in terms of population), Uttar Pradesh. it is generally done on the see-through fabric in which the work done on the wrong side of the fabric is clearly visible from the right side of the fabric. On the other hand, Madhubani paintings are an art form of Mithila region of Bihar. It was the birthplace of Hindu goddess Devi Sita. It is said that when Devi Sita was getting married, her father king Janak wanted to embrace that moment in the form of paintings that’s when this concept of Madhubani paintings came into reality. In this research paper the likeability and acceptability of the fusion of these two arts (Chikankari and Madhubani paintings) has been checked among consumers of Chikankari.Abstract
How to Cite
Downloads
Similar Articles
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Hardik Talsania, Kirit Modi, Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nandini S, Nagabushanam M, Nandeesh G S, Sundaresha M P, Pramodkumar S, Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

