Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.42Keywords:
Type 2 diabetes mellitus, Bio-inspired algorithms, Machine learning models.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Type 2 diabetes mellitus is a chronic condition that affects millions of people worldwide. Predicting the risk of developing this disease is critical for early intervention and prevention. Bio-inspired algorithms and machine learning models have shown promising results in predicting the risk of type 2 diabetes mellitus. In this paper, we will explore the use of these two approaches and their hybridization to improve the accuracy of risk prediction. The first section will introduce bio-inspired algorithms and their application in predicting the risk of type 2 diabetes mellitus. We will discuss the advantages of using these algorithms and their limitations. The second section will focus on machine learning models and their potential in predicting the risk of type 2 diabetes mellitus. We will also discuss the limitations of this approach. The final section will compare and contrast the two approaches and explore how their hybridization can overcome their limitations and improve the accuracy of risk prediction. Overall, this paper aims to provide an in-depth analysis of the use of bio-inspired algorithms and machine learning models in predicting the risk of type 2 diabetes mellitus and their hybridization to improve their accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Manibabu, M. Gomathy, Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mudassir Peeran A, A.R. Mohamed Shanavas, A Hybrid Post-Quantum Cryptography and Machine Learning and Framework for Intrusion Detection and Downgrade Attack Prevention throughout PQC Migration , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

