Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.42Keywords:
Type 2 diabetes mellitus, Bio-inspired algorithms, Machine learning models.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Type 2 diabetes mellitus is a chronic condition that affects millions of people worldwide. Predicting the risk of developing this disease is critical for early intervention and prevention. Bio-inspired algorithms and machine learning models have shown promising results in predicting the risk of type 2 diabetes mellitus. In this paper, we will explore the use of these two approaches and their hybridization to improve the accuracy of risk prediction. The first section will introduce bio-inspired algorithms and their application in predicting the risk of type 2 diabetes mellitus. We will discuss the advantages of using these algorithms and their limitations. The second section will focus on machine learning models and their potential in predicting the risk of type 2 diabetes mellitus. We will also discuss the limitations of this approach. The final section will compare and contrast the two approaches and explore how their hybridization can overcome their limitations and improve the accuracy of risk prediction. Overall, this paper aims to provide an in-depth analysis of the use of bio-inspired algorithms and machine learning models in predicting the risk of type 2 diabetes mellitus and their hybridization to improve their accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Vivekananth, Navneet Sharma, Cyberbullying Detection Using Continuous Based Bag of Words with Machine Learning by Text Classification , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- S. Srinithiya, K. Menaka, Optimized Hybrid Feature Selection Techniques for Detecting Iron Deficiency Anemia , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

