The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.01Keywords:
Explainable AI, Healthcare AI, Model Interpretability, Clinical Decision Support, Diabetes Prediction, PIMA Diabetes Dataset, Transparent Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of Artificial Intelligence (AI) in healthcare has revolutionized disease diagnosis and risk prediction. However, the "black-box" nature of AI models raises concerns about trust, interpretability, and regulatory compliance. Explainable AI (XAI) addresses these issues by enhancing transparency in AI-driven decisions. This study explores the role of XAI in diabetes prediction using the PIMA Diabetes Dataset, evaluating machine learning models—logistic regression, decision trees, random forests, and deep learning—alongside SHAP and LIME explainability techniques. Data pre-processing includes handling missing values, feature scaling, and selection. Model performance is assessed through accuracy, AUC-ROC, precision-recall, F1-score, and computational efficiency. Findings reveal that the Random Forest model achieved the highest accuracy (93%) but required post-hoc explainability. Logistic Regression provided inherent interpretability but with lower accuracy (81%). SHAP identified glucose, BMI, and age as key diabetes predictors, offering robust global explanations at a higher computational cost. LIME, with lower computational overhead, provided localized insights but lacked comprehensive interpretability. SHAP’s exponential complexity limits real-time deployment, while LIME’s linear complexity makes it more practical for clinical decision support.These insights underscore the importance of XAI in enhancing transparency and trust in AI-driven healthcare. Integrating explainability techniques can improve clinical decision-making and regulatory compliance. Future research should focus on hybrid XAI models that optimize accuracy, interpretability, and computational efficiency for real-time deployment in healthcare settings.Abstract
How to Cite
Downloads
Similar Articles
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Vinodini R, Ritha W, A green inventory model for deteriorating items while producing overtime with nonlinear cost and stock dependent demand , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

