The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.01Keywords:
Explainable AI, Healthcare AI, Model Interpretability, Clinical Decision Support, Diabetes Prediction, PIMA Diabetes Dataset, Transparent Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of Artificial Intelligence (AI) in healthcare has revolutionized disease diagnosis and risk prediction. However, the "black-box" nature of AI models raises concerns about trust, interpretability, and regulatory compliance. Explainable AI (XAI) addresses these issues by enhancing transparency in AI-driven decisions. This study explores the role of XAI in diabetes prediction using the PIMA Diabetes Dataset, evaluating machine learning models—logistic regression, decision trees, random forests, and deep learning—alongside SHAP and LIME explainability techniques. Data pre-processing includes handling missing values, feature scaling, and selection. Model performance is assessed through accuracy, AUC-ROC, precision-recall, F1-score, and computational efficiency. Findings reveal that the Random Forest model achieved the highest accuracy (93%) but required post-hoc explainability. Logistic Regression provided inherent interpretability but with lower accuracy (81%). SHAP identified glucose, BMI, and age as key diabetes predictors, offering robust global explanations at a higher computational cost. LIME, with lower computational overhead, provided localized insights but lacked comprehensive interpretability. SHAP’s exponential complexity limits real-time deployment, while LIME’s linear complexity makes it more practical for clinical decision support.These insights underscore the importance of XAI in enhancing transparency and trust in AI-driven healthcare. Integrating explainability techniques can improve clinical decision-making and regulatory compliance. Future research should focus on hybrid XAI models that optimize accuracy, interpretability, and computational efficiency for real-time deployment in healthcare settings.Abstract
How to Cite
Downloads
Similar Articles
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

