The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.01Keywords:
Explainable AI, Healthcare AI, Model Interpretability, Clinical Decision Support, Diabetes Prediction, PIMA Diabetes Dataset, Transparent Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of Artificial Intelligence (AI) in healthcare has revolutionized disease diagnosis and risk prediction. However, the "black-box" nature of AI models raises concerns about trust, interpretability, and regulatory compliance. Explainable AI (XAI) addresses these issues by enhancing transparency in AI-driven decisions. This study explores the role of XAI in diabetes prediction using the PIMA Diabetes Dataset, evaluating machine learning models—logistic regression, decision trees, random forests, and deep learning—alongside SHAP and LIME explainability techniques. Data pre-processing includes handling missing values, feature scaling, and selection. Model performance is assessed through accuracy, AUC-ROC, precision-recall, F1-score, and computational efficiency. Findings reveal that the Random Forest model achieved the highest accuracy (93%) but required post-hoc explainability. Logistic Regression provided inherent interpretability but with lower accuracy (81%). SHAP identified glucose, BMI, and age as key diabetes predictors, offering robust global explanations at a higher computational cost. LIME, with lower computational overhead, provided localized insights but lacked comprehensive interpretability. SHAP’s exponential complexity limits real-time deployment, while LIME’s linear complexity makes it more practical for clinical decision support.These insights underscore the importance of XAI in enhancing transparency and trust in AI-driven healthcare. Integrating explainability techniques can improve clinical decision-making and regulatory compliance. Future research should focus on hybrid XAI models that optimize accuracy, interpretability, and computational efficiency for real-time deployment in healthcare settings.Abstract
How to Cite
Downloads
Similar Articles
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Mallamma V. Reddy, Sachhidanand Sidramappa, Digitization and Recognition of Kannada Inscription Dynasty , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Viji Parthasarathy, Manikandasaran S S, Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

