Deep-Ultranet: Diabetic Retinopathy Grading System Using Ultra-Widefield Retinal Images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.14Keywords:
Retinopathy, Retinal image analysis, ultra-wide field images, Deep neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetic Retinopathy (DR) is a complication due to diabetes that affects human vision. An automated and more accurate classification system is required for DR diagnosis to avoid blindness worldwide. This study presents a novel deep learning-based framework, Deep-UltraNet, designed for grading DR using Ultra-Wide Field (UWF) retinal images. The proposed system combines the strengths of dual colour space analysis (RGB and Lab) to enhance diagnostic precision. It integrates advanced preprocessing techniques, including bicubic interpolation and colour space conversion, followed by deep feature extraction through a custom Convolutional Neural Network (CNN) architecture. The custom CNN consists of four convolutional blocks using 3×3 kernels, max pooling layers, and fully connected layers for classification into four DR severity levels. The classification employs a neural network optimized with the Adam optimizer and trained via 10-fold cross-validation on the DeepDRiD dataset. The experimental results show that the proposed Deep-UltraNet provides 99.16% detection accuracy that surpasses state-of-the-art architectures such as VGG16, ResNet, and DeepUWF.Abstract
How to Cite
Downloads
Similar Articles
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Mansi Harjivan Chauhan, Divyang D. Vyas, Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

