Deep-Ultranet: Diabetic Retinopathy Grading System Using Ultra-Widefield Retinal Images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.14Keywords:
Retinopathy, Retinal image analysis, ultra-wide field images, Deep neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetic Retinopathy (DR) is a complication due to diabetes that affects human vision. An automated and more accurate classification system is required for DR diagnosis to avoid blindness worldwide. This study presents a novel deep learning-based framework, Deep-UltraNet, designed for grading DR using Ultra-Wide Field (UWF) retinal images. The proposed system combines the strengths of dual colour space analysis (RGB and Lab) to enhance diagnostic precision. It integrates advanced preprocessing techniques, including bicubic interpolation and colour space conversion, followed by deep feature extraction through a custom Convolutional Neural Network (CNN) architecture. The custom CNN consists of four convolutional blocks using 3×3 kernels, max pooling layers, and fully connected layers for classification into four DR severity levels. The classification employs a neural network optimized with the Adam optimizer and trained via 10-fold cross-validation on the DeepDRiD dataset. The experimental results show that the proposed Deep-UltraNet provides 99.16% detection accuracy that surpasses state-of-the-art architectures such as VGG16, ResNet, and DeepUWF.Abstract
How to Cite
Downloads
Similar Articles
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Jyoti Vishwakarma, Sunil Kumar, Mapping Research on ESG Disclosure and Firm Performance: A Systematic Bibliometric Analysis , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V. Manibabu, M. Gomathy, Data Quality Management and Risk Assessment of Dairy Farming with Feed Behaviour Analysis Using Big Data Analytics with YOLOv5 Algorithm , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

