Deep-Ultranet: Diabetic Retinopathy Grading System Using Ultra-Widefield Retinal Images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.14Keywords:
Retinopathy, Retinal image analysis, ultra-wide field images, Deep neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetic Retinopathy (DR) is a complication due to diabetes that affects human vision. An automated and more accurate classification system is required for DR diagnosis to avoid blindness worldwide. This study presents a novel deep learning-based framework, Deep-UltraNet, designed for grading DR using Ultra-Wide Field (UWF) retinal images. The proposed system combines the strengths of dual colour space analysis (RGB and Lab) to enhance diagnostic precision. It integrates advanced preprocessing techniques, including bicubic interpolation and colour space conversion, followed by deep feature extraction through a custom Convolutional Neural Network (CNN) architecture. The custom CNN consists of four convolutional blocks using 3×3 kernels, max pooling layers, and fully connected layers for classification into four DR severity levels. The classification employs a neural network optimized with the Adam optimizer and trained via 10-fold cross-validation on the DeepDRiD dataset. The experimental results show that the proposed Deep-UltraNet provides 99.16% detection accuracy that surpasses state-of-the-art architectures such as VGG16, ResNet, and DeepUWF.Abstract
How to Cite
Downloads
Similar Articles
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Jafar Ali, G. Ravi, D.I. George Amalarethinam, AI-Integrated Swarm-Powered Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks to Maximize Network Lifetime , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Josephine Theresa S, Graph Neural Network Ensemble with Particle Swarm Optimization for Privacy-Preserving Thermal Comfort Prediction , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Subna MP, Kamalraj N, Human Activity Recognition through Skeleton-Based Motion Analysis Using YOLOv8 and Graph Convolutional Networks , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

