Deep-Ultranet: Diabetic Retinopathy Grading System Using Ultra-Widefield Retinal Images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.12.14Keywords:
Retinopathy, Retinal image analysis, ultra-wide field images, Deep neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diabetic Retinopathy (DR) is a complication due to diabetes that affects human vision. An automated and more accurate classification system is required for DR diagnosis to avoid blindness worldwide. This study presents a novel deep learning-based framework, Deep-UltraNet, designed for grading DR using Ultra-Wide Field (UWF) retinal images. The proposed system combines the strengths of dual colour space analysis (RGB and Lab) to enhance diagnostic precision. It integrates advanced preprocessing techniques, including bicubic interpolation and colour space conversion, followed by deep feature extraction through a custom Convolutional Neural Network (CNN) architecture. The custom CNN consists of four convolutional blocks using 3×3 kernels, max pooling layers, and fully connected layers for classification into four DR severity levels. The classification employs a neural network optimized with the Adam optimizer and trained via 10-fold cross-validation on the DeepDRiD dataset. The experimental results show that the proposed Deep-UltraNet provides 99.16% detection accuracy that surpasses state-of-the-art architectures such as VGG16, ResNet, and DeepUWF.Abstract
How to Cite
Downloads
Similar Articles
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

